计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (15): 117-123.DOI: 10.3778/j.issn.1002-8331.2105-0028
廖茜,顾益军
LIAO Qian, GU Yijun
摘要: 异常检测是比特币交易数据分析的研究热点之一。针对现有的基于机器学习的异常交易检测方法难以对多种异常类型进行准确概括、泛化能力不足的问题,对比特币交易数据构建网络结构并提取异常行为模式相关特征,应用基于局部动态选择组合的并行集成算法(LSCP)构建检测模型,并在算法中融入7种经典的异常检测算法,利用基学习器对不同异常类型的敏感性,提升检测模型的可靠性和稳定性。实验结果表明,与传统的检测方法相比,结合异构基学习器的LSCP算法在整体检测性能上具有更好的效果。