计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (9): 30-50.DOI: 10.3778/j.issn.1002-8331.2111-0248
徐有为,张宏军,程恺,廖湘琳,张紫萱,李雷
出版日期:
2022-05-01
发布日期:
2022-05-01
XU Youwei, ZHANG Hongjun, CHENG Kai, LIAO Xianglin, ZHANG Zixuan, LI Lei
Online:
2022-05-01
Published:
2022-05-01
摘要: 随着互联网技术和应用模式的迅猛发展,表达方式丰富直观的知识图谱得到了大量关注,在知识表示学习方面积累了丰富研究成果,这些研究已在垂直搜索、智能问答等应用领域发挥了重要作用。在总结现有知识图谱嵌入研究基础之上,以面向的知识图谱数量为依据,将知识图谱嵌入模型分为面向单个知识图谱的链接预测模型和面向多个知识图谱的实体对齐模型两大类;逐类分析了知识图谱嵌入模型的标准处理流程,并在模型假设、实现方法、语义捕获层次等方面做了详细对比;通过充分探讨现有知识图谱嵌入模型存在的问题,展望了知识图谱嵌入的未来研究方向。
徐有为, 张宏军, 程恺, 廖湘琳, 张紫萱, 李雷. 知识图谱嵌入研究综述[J]. 计算机工程与应用, 2022, 58(9): 30-50.
XU Youwei, ZHANG Hongjun, CHENG Kai, LIAO Xianglin, ZHANG Zixuan, LI Lei. Comprehensive Survey on Knowledge Graph Embedding[J]. Computer Engineering and Applications, 2022, 58(9): 30-50.
[1] BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,2008:1247-1250. [2] MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41. [3] SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web,2007:697-706. [4] HOFFART J,SUCHANEK F M,BERBERICH K,et al.YAGO2:a spatially and temporally enhanced knowledge base from Wikipedia[J].Artificial Intelligence,2013,194:28-61. [5] MAHDISOLTANI F,BIEGA J,SUCHANEK F.Yago3:a knowledge base from multilingual wikipedias[C]//7th Biennial Conference on Innovative Data Systems Research,2014. [6] AUER S,BIZER C,KOBILAROV G,et al.Dbpedia:a nucleus for a web of open data[M]//The semantic Web.Berlin,Heidelberg:Springer,2007:722-735. [7] CARLSON A,BETTERIDGE J,KISIEL B,et al.Toward an architecture for never-ending language learning[C]//Twenty-Fourth AAAI Conference on Artificial Intelligence,2010. [8] MITCHELL T,COHEN W,HRUSCHKA E,et al.Never-ending learning[J].Communications of the ACM,2018,61(5):103-115. [9] ETZIONI O,CAFARELLA M,DOWNEY D,et al.Web-scale information extraction in knowitall:(preliminary results)[C]//Proceedings of the 13th International Conference on World Wide Web,2004:100-110. [10] WU W,LI H,WANG H,et al.Probase:a probabilistic taxonomy for text understanding[C]//Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,2012:481-492. [11] 刘知远,孙茂松,林衍凯,等.知识表示学习研究进展[J].计算机研究与发展,2016,53(2):247-261. LIU Z Y,SUN M S,LIN Y K,et al.Knowledge representation learning:a review[J].Journal of Computer Research and Development,2016,53(2):247-261. [12] BORDES A,USUNIER N,CHOPRA S,et al.Large-scale simple question answering with memory networks[J].arXiv:1506.02075,2015. [13] DAI Z,LI L,XU W.CFO:conditional focused neural question answering with large-scale knowledge bases[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2016:800-810. [14] HE S,LIU C,LIU K,et al.Generating natural answers by incorporating copying and retrieving mechanisms in sequence?to?sequence learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2017:199-208. [15] CHEN Y,WU L,ZAKI M J.Bidirectional attentive memory networks for question answering over knowledge bases[C]//Proceedings of NAACL-HLT,2019:2913-2923. [16] ZHANG Y,DAI H,KOZAREVA Z,et al.Variational reasoning for question answering with knowledge graph[C]//Thirty-Second AAAI Conference on Artificial Intelligence,2018. [17] DING M,ZHOU C,CHEN Q,et al.Cognitive graph for multi-hop reading comprehension at scale[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:2694-2703. [18] COHEN W W,SUN H,HOFER R A,et al.Scalable neural methods for reasoning with a symbolic knowledge base[C]//International Conference on Learning Representations,2019. [19] WANG H,ZHANG F,ZHAO M,et al.Multi-task feature learning for knowledge graph enhanced recommendation[C]//The World Wide Web Conference,2019:2000-2010. [20] WANG X,HE X,CAO Y,et al.Kgat:knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2019:950-958. [21] WANG H,ZHANG F,XIE X,et al.DKN:deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference,2018:1835-1844. [22] ZHOU K,ZHAO W X,BIAN S,et al.Improving conversational recommender systems via knowledge graph based semantic fusion[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2020:1006-1014. [23] DAI Q N,TU D N,PHUNG D.A relational memory-based embedding model for triple classification and search personalization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics(ACL),2020:3429-3435. [24] XIONG C,POWER R,CALLAN J.Explicit semantic ranking for academic search via knowledge graph embedding[C]//Proceedings of the 26th International Conference on World Wide Web,2017:1271-1279. [25] LI C Y,LIANG X,HU Z,et al.Knowledge-driven encode,retrieve,paraphrase for medical image report generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:6666-6673. [26] GAUR M,ALAMBO A,SAIN J P,et al.Knowledge-aware assessment of severity of suicide risk for early intervention[C]//The World Wide Web Conference,2019:514-525. [27] 刘峤,李杨,段宏,刘瑶,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600. LIU Q,LI Y,DUAN H,et al.Knowledge graph construction techniques[J].Journal of Computer Research and Development,2016,53(3):582-600 [28] 徐增林,盛泳潘,贺丽荣,等.知识图谱技术综述[J].电子科技大学学报,2016,45(4):589-606. XU Z L,SHENG Y P,HE L R,et al.Review on knowledge graph techniques[J].Journal of University of Electronic Science and Technology of China,2016,45(4):589-606. [29] 王鑫,邹磊,王朝坤,等.知识图谱数据管理研究综述[J].软件学报,2019,30(7):2139-2174. WANG X,ZOU L,WANG C K,et al.Research on knowledge graph data management:a survey[J].Journal of Software,2019,30(7):2139-2174. [30] 王勇超,罗胜文,杨英宝,等.知识图谱可视化综述[J].计算机辅助设计与图形学学报,2019,31(10):1666-1676. WANG Y C,LUO S W,YANG Y B,et al.A survey on knowledge graph visualization[J].Journal of Computer-Aided Design & Computer Graphics,2019,31(10):1666-1676. [31] 官赛萍,靳小龙,贾岩涛,等.面向知识图谱的知识推理研究进展[J].软件学报,2018,29(10):2966-2994. GUAN S P,JIN X L,JIA Y T,et al.Knowledge reasoning over knowledge graph:a survey[J].Journal of Software,2018,29(10):2966-2994. [32] NICKEL M,MURPHY K,TRESP V,et al.A review of relational machine learning for knowledge graphs[J].Proceedings of the IEEE,2016,104(1):11-33. [33] WANG Q,MAO Z,WANG B,et al.Knowledge graph embedding:a survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743. [34] PAULHEIM H.Knowledge graph refinement:a survey of approaches and evaluation methods[J].Semantic Web,2017,8(3):489-508. [35] CAI H,ZHENG V W,CHANG K C C.A comprehensive survey of graph embedding:problems,techniques,and applications[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1616-1637. [36] LIN Y,HAN X,XIE R,et al.Knowledge representation learning:a quantitative review[J].arXiv:1812.10901,2018. [37] CHEN X,JIA S,XIANG Y.A review:knowledge reasoning over knowledge graph[J].Expert Systems with Applications,2020,141:112948. [38] GESESE G A,BISWAS R,SACK H.A comprehensive survey of knowledge graph embeddings with literals:techniques and applications[C]//Proceedings of DL4KG2019-Workshop on Deep Learning for Knowledge Graphs,2019:31. [39] 庄严,李国良,冯建华.知识库实体对齐技术综述[J].计算机研究与发展,2016,53(1):165-192. ZHUANG Y,LI G L,FENG J H.A survey on entity alignment of knowledge base[J].Journal of Computer Research and Development,2016,53(1):165-192. [40] JI S,PAN S,CAMBRIA E,et al.A survey on knowledge graphs:representation,acquisition and applications[J].arXiv:2002.00388,2020. [41] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2,2013:3111-3119. [42] BORDES A,GLOROT X,WESTON J,et al.Joint learning of words and meaning representations for open-text semantic parsing[C]//Proceedings of 15th International Conference on Artificial Intelligence and Statistics,2012:127-135. [43] BORDES A,WESTON J,COLLOBERT R,et al.Learning structured embeddings of knowledge bases[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2011. [44] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Neural Information Processing Systems(NIPS),2013:1-9. [45] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2014. [46] XIAO H,HUANG M,ZHU X.From one point to a manifold:knowledge graph embedding for precise link prediction[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,2016:1315-1321. [47] HE S,LIU K,JI G,et al.Learning to represent knowledge graphs with gaussian embedding[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,2015:623-632. [48] LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2015. [49] JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers),2015:687-696. [50] JI G,LIU K,HE S,et al.Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2016. [51] FAN M,ZHOU Q,CHANG E,et al.Transition-based knowledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language,Information and Computing,2014:328-337. [52] FENG J,HUANG M,WANG M,et al.Knowledge graph embedding by flexible translation[C]//Proceedings of the Fifteenth International Conference on Principles of Knowledge Representation and Reasoning,2016:557-560. [53] XIAO H,HUANG M,HAO Y,et al.TransA:an adaptive approach for knowledge graph embedding[J].arXiv:1509.05490,2015. [54] XIAO H,HUANG M,ZHU X.TransG:a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2016:2316-2325. [55] NGUYEN D Q,SIRTS K,QU L,et al.STransE:a novel embedding model of entities and relationships in knowledge bases[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2016:460-466. [56] XIE Q,MA X,DAI Z,et al.An interpretable knowledge transfer model for knowledge base completion[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2017:950-962. [57] QIAN W,FU C,ZHU Y,et al.Translating embeddings for knowledge graph completion with relation attention mechanism[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence,2018:4286-4292. [58] NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning,2011:809-816. [59] KAZEMI S M,POOLE D.SimplE embedding for link prediction in knowledge graphs[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems,2018:4289-4300. [60] BALAZEVIC I,ALLEN C,HOSPEDALES T.TuckER:tensor factorization for knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP),2019:5188-5197. [61] ZHANG W,PAUDEL B,ZHANG W,et al.Interaction embeddings for prediction and explanation in knowledge graphs[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining,2019:96-104. [62] BORDES A,GLOROT X,WESTON J,et al.A semantic matching energy function for learning with multi-relational data[J].Machine Learning,2014,94(2):233-259. [63] JENATTON R,LE ROUX N,BORDES A,et al.A latent factor model for highly multi-relational data[C]//Advances in Neural Information Processing Systems 25(NIPS 2012),2012:3176-3184. [64] GARCíA-DURáN A,BORDES A,USUNIER N.Effective blending of two and three-way interactions for modeling multi-relational data[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin,Heidelberg:Springer,2014:434-449. [65] CHANG K W,YIH W,YANG B,et al.Typed tensor decomposition of knowledge bases for relation extraction[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP),2014:1568-1579. [66] YANG B,YIH W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of International Conference on Learning Representations(ICLR),2015. [67] NICKEL M,ROSASCO L,POGGIO T.Holographic embeddings of knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2016. [68] TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Conference on Machine Learning,2016:2071-2080. [69] LIU H,WU Y,YANG Y.Analogical inference for multi-relational embeddings[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70,2017:2168-2178. [70] XUE Y,YUAN Y,XU Z,et al.Expanding holographic embeddings for knowledge completion[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems,2018:4496-4506. [71] SOCHER R,CHEN D,MANNING C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 1,2013:926-934. [72] DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [73] VU T,NGUYEN T D,NGUYEN D Q,et al.A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers),2019:2180-2189. [74] DONG X,GABRILOVICH E,HEITZ G,et al.Knowledge vault:a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2014:601-610. [75] LIU Q,JIANG H,EVDOKIMOV A,et al.Probabilistic reasoning via deep learning:neural association models[J].arXiv:1603.07704,2016. [76] SHI B,WENINGER T.ProjE:embedding projection for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2017. [77] NGUYEN T D,NGUYEN D Q,PHUNG D.A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 2(Short Papers),2018:327-333. [78] SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//European Semantic Web Conference.Cham:Springer,2018:593-607. [79] SHANG C,TANG Y,HUANG J,et al.End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:3060-3067. [80] JIANG X,WANG Q,WANG B.Adaptive convolution for multi-relational learning[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers),2019:978-987. [81] BALAŽEVIĆ I,ALLEN C,HOSPEDALES T M.Hypernetwork knowledge graph embeddings[C]//International Conference on Artificial Neural Networks.Cham:Springer,2019:553-565. [82] SUN Z,DENG Z H,NIE J Y,et al.RotatE:knowledge graph embedding by relational rotation in complex space[C]//International Conference on Learning Representations,2018. [83] ZHANG S,TAY Y,YAO L,et al.Quaternion knowledge graph embeddings[J].arXiv:1904.10281,2019. [84] BALAZEVIC I,ALLEN C,HOSPEDALES T.Multi-relational poincaré graph embeddings[C]//Advances in Neural Information Processing Systems,2019:4463-4473. [85] ZHANG Z,CAI J,ZHANG Y,et al.Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:3065-3072. [86] NICKEL M,KIELA D.Poincaré embeddings for learning hierarchical representations[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,2017:6341-6350. [87] EBISU T,ICHISE R.Toruse:knowledge graph embedding on a lie group[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [88] XU C,LI R.Relation embedding with dihedral group in knowledge graph[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:263-272. [89] CHAMI I,WOLF A,JUAN D C,et al.Low-dimensional hyperbolic knowledge graph embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:6901-6914. [90] TOUTANOVA K,CHEN D.Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality,2015:57-66. [91] ROSSI A,BARBOSA D,FIRMANI D,et al.Knowledge graph embedding for link prediction:a comparative analysis[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2021,15(2):1-49. [92] ALI M,BERRENDORF M,HOYT C T,et al.Bringing light into the dark:a large-scale evaluation of knowledge graph embedding models under a unified framework[J].arXiv:2006.13365,2020. [93] SUN Z,VASHISHTH S,SANYAL S,et al.A re-evaluation of knowledge graph completion methods[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:5516-5522. [94] XIE R,LIU Z,JIA J,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2016. [95] YAO L,MAO C,LUO Y.KG-BERT:BERT for knowledge graph completion[J].arXiv:1909.03193,2019. [96] LIN Y,LIU Z,LUAN H,et al.Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,2015:705-714. [97] GUO L,SUN Z,HU W.Learning to exploit long-term relational dependencies in knowledge graphs[C]//International Conference on Machine Learning,2019:2505-2514. [98] XIE R,LIU Z,SUN M.Representation learning of knowledge graphs with hierarchical types[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,2016:2965-2971. [99] LIN Y,LIU Z,SUN M.Knowledge representation learning with entities,attributes and relations[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,2016:2866-2872. [100] TAY Y,TUAN L A,PHAN M C,et al.Multi-task neural network for non-discrete attribute prediction in knowledge graphs[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,2017:1029-1038. [101] GARCIA-DURAN A,NIEPERT M.Kblrn:End-to-end learning of knowledge base representations with latent,relational,and numerical features[J].arXiv:1709.04676,2017. [102] CHEN X,CHEN M,SHI W,et al.Embedding uncertain knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:3363-3370. [103] QU M,TANG J.Probabilistic logic neural networks for reasoning[J].arXiv:1906.08495,2019. [104] XIE R,LIU Z,LUAN H,et al.Image-embodied knowledge representation learning[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:3140-3146. [105] PEZESHKPOUR P,CHEN L,SINGH S.Embedding multimodal relational data for knowledge base completion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,2018:3208-3218. [106] CHEN M,TIAN Y,YANG M,et al.Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:1511-1517. [107] SUN Z,HU W,ZHANG Q,et al.Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence,2018:4396-4402. [108] PEI S,YU L,ZHANG X.Improving cross-lingual entity alignment via optimal transport[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence,2019:3231-3237. [109] SUN Z,HUANG J,HU W,et al.Transedge:translating relation-contextualized embeddings for knowledge graphs[C]//International Semantic Web Conference.Cham:Springer,2019:612-629. [110] SUN Z,HU W,LI C.Cross-lingual entity alignment via joint attribute-preserving embedding[C]//International Semantic Web Conference.Cham:Springer,2017:628-644. [111] CHEN M,TIAN Y,CHANG K W,et al.Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence,2018:3998-4004. [112] LI S,LI X,YE R,et al.Non-translational alignment for multi-relational networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence,2018:4180-4186. [113] TRISEDYA B D,QI J,ZHANG R.Entity alignment between knowledge graphs using attribute embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:297-304. [114] HE F,LI Z,QIANG Y,et al.Unsupervised entity alignment using attribute triples and relation triples[C]//International Conference on Database Systems for Advanced Applications.Cham:Springer,2019:367-382. [115] PEI S,YU L,HOEHNDORF R,et al.Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference[C]//The World Wide Web Conference,2019:3130-3136. [116] LIN X,YANG H,WU J,et al.Guiding cross-lingual entity alignment via adversarial knowledge embedding[C]//2019 IEEE International Conference on Data Mining(ICDM),2019:429-438. [117] ZHANG Q,SUN Z,HU W,et al.Multi-view knowledge graph embedding for entity alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence,2019:5429-5435. [118] SHI X,XIAO Y.Modeling multi-mapping relations for precise cross-lingual entity alignment[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP),2019:813-822. [119] ZHU H,XIE R,LIU Z,et al.Iterative entity alignment via joint knowledge embeddings[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:4258-4264. [120] ZENG W,ZHAO X,WANG W,et al.Degree-aware alignment for entities in tail[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,2020:811-820. [121] WANG Z,LV Q,LAN X,et al.Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,2018:349-357. [122] ZHU Q,ZHOU X,WU J,et al.Neighborhood-aware attentional representation for multilingual knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence,2019:1943-1949. [123] WU Y,LIU X,FENG Y,et al.Relation-aware entity alignment for heterogeneous knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence,2019:5278-5284. [124] SUN Z,WANG C,HU W,et al.Knowledge graph alignment network with gated multi-hop neighborhood aggregation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:222-229. [125] XU K,WANG L,YU M,et al.Cross-lingual knowledge graph alignment via graph matching neural network[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:3156-3161. [126] CAO Y,LIU Z,LI C,et al.Multi-channel graph neural network for entity alignment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:1452-1461. [127] YE R,LI X,FANG Y,et al.A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence,2019:4135-4141. [128] WU Y,LIU X,FENG Y,et al.Jointly learning entity and relation representations for entity alignment[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP),2019:240-249. [129] LI C,CAO Y,HOU L,et al.Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP),2019:2723-2732. [130] YANG H W,ZOU Y,SHI P,et al.Aligning cross-lingual entities with multi-aspect information[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP),2019:4422-4432. [131] WANG M,WANG H,QI G,et al.Richpedia:a large-scale,comprehensive multi-modal knowledge graph[J].Big Data Research,2020,22:100159. [132] WANG W,LIU R,WANG M,et al.Memory-based network for scene graph with unbalanced relations[C]//Proceedings of the 28th ACM International Conference on Multimedia,2020:2400-2408. [133] SUN Z,ZHANG Q,HU W,et al.A benchmarking study of embedding-based entity alignment for knowledge graphs[J].Proceedings of the VLDB Endowment,2020,13(12):2326-2340. [134] QU M,CHEN J,XHONNEUX L P,et al.RNNLogic:learning logic rules for reasoning on knowledge graphs[J].arXiv:2010.04029,2020. [135] LACROIX T,OBOZINSKI G,USUNIER N.Tensor decompositions for temporal knowledge base completion[J].arXiv:2004.04926,2020. [136] GOEL R,KAZEMI S M,BRUBAKER M,et al.Diachronic embedding for temporal knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:3988-3995. |
[1] | 张昕, 刘思远, 徐雁翎. 结合注意力机制的知识感知推荐算法[J]. 计算机工程与应用, 2022, 58(9): 168-174. |
[2] | 闫志豪, 刘京菊, 郭徽, 郭兵阳. 基于域名系统知识图谱的CDN域名识别技术[J]. 计算机工程与应用, 2022, 58(6): 149-156. |
[3] | 唐宏, 范森, 唐帆, 朱龙娇. 融合知识图谱与注意力机制的推荐算法[J]. 计算机工程与应用, 2022, 58(5): 94-103. |
[4] | 熊中敏, 马海宇, 李帅, 张娜. 知识图谱在海洋领域的应用及前景分析综述[J]. 计算机工程与应用, 2022, 58(3): 15-33. |
[5] | 宋浩楠, 赵刚, 孙若莹. 基于深度强化学习的知识推理研究进展综述[J]. 计算机工程与应用, 2022, 58(1): 12-25. |
[6] | 张宇, 郭文忠, 林森, 文朝武, 龙洁花. 深度学习与知识推理相结合的研究综述[J]. 计算机工程与应用, 2022, 58(1): 56-69. |
[7] | 王友发,周圆圆,罗建强. 近20年智能制造研究热点与前沿挖掘[J]. 计算机工程与应用, 2021, 57(6): 49-57. |
[8] | 彭昭勇,伍权,陈华伟,郑跃,王书祥. 基于文献计量的机器视觉缺陷检测研究述评[J]. 计算机工程与应用, 2021, 57(4): 28-34. |
[9] | 刘藤,陈恒,李冠宇. 联合FOL规则的知识图谱表示学习方法[J]. 计算机工程与应用, 2021, 57(4): 100-107. |
[10] | 卢琪,潘志松,谢钧. 融合知识表示学习的双向注意力问答模型[J]. 计算机工程与应用, 2021, 57(23): 171-177. |
[11] | 江洋洋,金伯,张宝昌. 深度学习在自然语言处理领域的研究进展[J]. 计算机工程与应用, 2021, 57(22): 1-14. |
[12] | 武书钊,李功权,卜明伟. 基于知识图谱的自杀倾向检测问答系统构建[J]. 计算机工程与应用, 2021, 57(22): 304-312. |
[13] | 吴昊,徐行健,孟繁军. 课程资源的融合知识图谱多任务特征推荐算法[J]. 计算机工程与应用, 2021, 57(21): 132-139. |
[14] | 张雪婷,程华,房一泉. 基于元路径与节点属性的合著关系预测[J]. 计算机工程与应用, 2021, 57(2): 164-169. |
[15] | 陈恒,祁瑞华,朱毅,杨晨,郭旭,王维美. 球坐标建模语义分层的知识图谱补全方法[J]. 计算机工程与应用, 2021, 57(15): 101-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||