计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (6): 29-41.DOI: 10.3778/j.issn.1002-8331.2108-0030
张明,卢庆华,黄元忠,李瑞轩
出版日期:
2022-03-15
发布日期:
2022-03-15
ZHANG Ming, LU Qinghua, HUANG Yuanzhong, LI Ruixuan
Online:
2022-03-15
Published:
2022-03-15
摘要: 语法纠错(grammatical error correction,GEC)是自然语言处理领域的重要应用之一,在近几年取得了较大的进展和丰富的研究成果。对语法纠错研究进行了深入调研,旨在更好地了解当前的研究进展、面对的挑战和未来发展趋势。介绍了语法纠错的基本含义和研究概况,分析了语法纠错领域的重要研究进展,对数据处理方法、算法模型和GEC评估方法等关键方法分别做了探讨,并概括了中文语法纠错的研究状况。总结了语法纠错研究的相关资源,主要包括文献资源、开源应用和公开数据,并讨论了GEC面临的问题和挑战。
张明, 卢庆华, 黄元忠, 李瑞轩. 自然语言语法纠错的最新进展和挑战[J]. 计算机工程与应用, 2022, 58(6): 29-41.
ZHANG Ming, LU Qinghua, HUANG Yuanzhong, LI Ruixuan. Recent Advances and Challenges on Grammatical Error Correction in Natural Language[J]. Computer Engineering and Applications, 2022, 58(6): 29-41.
[1] KANEKO M,MITA M,KIYONO S,et al.Encoder-decoder models can benefit from pre-trained masked language models in grammatical error correction[C]//58th Annual Meeting of the Association for Computational Linguistics,Jul 6-10,2020:4248-4254. [2] ROTHE S,MALLINSON J,MALMI E,et al.A simple recipe for multilingual grammatical error correction[EB/OL].[2021-07-15].https://arxiv.org/abs/2106.03830. [3] SUN X,GE T,WEI F,et al.Instantaneous grammatical error correction with shallow aggressive decoding[EB/OL].[2021-07-15].https://arxiv.org/abs/2106.04970. [4] MACDONALD N,FRASE L,GINGRICH P,et al.The writer’s workbench:computer aids for text analysis[J].IEEE Transactions on Communications,1982,30(1):105-110. [5] THURMAIR G.Grammar and style checkers,in Translator’s workbench[M].[S.l.]:Springer,1995:117-127. [6] NABER D.A rule-based style and grammar checker[D].Bielefeld:Bielefeld University,2003. [7] CHRIS B,DOLAN WILLIAM B,MICHAEL G.Correcting ESL errors using phrasal smt techniques[C]//21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL,Sydney,Jul 17-18,2006:249-256. [8] SAWAI Y,KOMACHI M,MATSUMOTO Y.A learner corpus-based approach to verb suggestion for ESL[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics,Sofia,Aug 4-9,2013:708-713. [9] DAHLMEIER D,NG H T,WU S M.Building a large annotated corpus of learner english:the nus corpus of learner english[C]//Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications,Atlanta,Jun 13,2013.Stroudsburg:Association for Computational Linguistics,2013:22-31. [10] YANNAKOUDAKIS H,BRISCOE T,MEDLOCK B.A new dataset and method for automatically grading esol texts[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies,Portland,Jun 19-24,2011.Stroudsburg:Association for Computational Linguistics,2011:180-189. [11] DALE R,KILGARRIFF A.Helping our own:the hoo 2011 pilot shared task[C]//Proceedings of the 13th European Workshop on Natural Language Generation,Nancy,Sep 28-30,2011:242-249. [12] DALE R,ANISIMOFF I,NARROWAY G.Hoo 2012:a report on the preposition and determiner error correction shared task[C]//Proceedings of the Seventh Workshop on Building Educational Applications Using NLP,Montréal,Jun 7,2012:54-62. [13] NG H T,WU S M,WU Y,et al.The conll-2013 shared task on grammatical error correction[C]//Proceedings of the Seventeenth Conference on Computational Natural Language Learning:Shared Task,Sofia,Aug 8-9,2013. [14] NG H T,WU S M,BRISCOE T,et al.The conll-2014 shared task on grammatical error correction[C]//Proceedings of the Eighteenth Conference on Computational Natural Language Learning:Shared Task,Baltimore,Jun 26-27,2014.Stroudsburg:Association for Computational Linguistics,2014:1-14. [15] BRYANT C,FELICE M,ANDERSEN O E,et al.The bea-2019 shared task on grammatical error correction[C]//Proceedings of the 14th Workshop on Innovative Use of NLP for Building Educational Applications,2019:52-75. [16] JUNCZYS-DOWMUNT M,GRUNDKIEWICZ R.The amu system in the conll-2014 shared task:grammatical error correction by data-intensive and feature-rich statistical machine translation[C]//Proceedings of the Eighteenth Conference on Computational Natural Language Learning:Shared Task,Baltimore,Jun 26-27,2014.Stroudsburg:Association for Computational Linguistics,2014:25-33. [17] YUAN Z,BRISCOE T.Grammatical error correction using neural machine translation[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,San Diego,Jun 12-17,2016:380-386. [18] ROZOVSKAYA A,ROTH D.Grammatical error correction:machine translation and classifiers[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,Berlin,Aug 7-12,2016:2205-2215. [19] GE T,WEI F R,ZHOU M.Fluency boost learning and inference for neural grammatical error correction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,Melbourne,Australia,Jul 15-20,2018:1055-1065. [20] REN H K,YANG L,XUN E D.A sequence to sequence learning for Chinese grammatical error correction[C]//CCF International Conference on Natural Language Processing and Chinese Computing,Hohhot,China,Aug 26-30,2018:401-410. [21] LEE M,SHIN H,LEE D,et al.Korean grammatical error correction based on transformer with copying mechanisms and grammatical noise implantation methods[J].Sensors,2021,21(8):2658. [22] TAKAHASHI Y,KATSUMATA S,KOMACHI M.Grammatical error correction using pseudo learner corpus considering error tendency of learners[C]//58th Annual Meeting of the Association for Computational Linguistics,Jul 6-10,2020:27-32. [23] WAN Z,WAN X,WANG W.Improving grammatical error correction with data augmentation by editing latent representation[C]//Proceedings of the 28th International Conference on Computational Linguistics,Barcelona,Spain,Dec 8-13,2020:2202-2212. [24] YIN F,LONG Q,MENG T,et al.On the robustness of language encoders against grammatical errors[EB/OL].[2021-07-15].https://arxiv.org/abs/2005.05683. [25] CHOE Y J,HAM J,PARK K,et al.A neural grammatical error correction system built on better pre-training and sequential transfer learning[C]//ACL 2019 Workshop on Innovative Use of Nlp for Building Educational Applications,2019:213-227. [26] PARNOW K,LI Z,ZHAO H Grammatical error correction as gan-like sequence labeling[EB/OL].(2021)[2021-07-15].https://arxiv.org/abs/2105.14209. [27] CHEN M,GE T,ZHANG X,et al.Improving the efficiency of grammatical error correction with erroneous span detection and correction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,Nov 16-20,2020:7162-7169. [28] BRYANT C,FELICE M,BRISCOE T.Automatic annotation and evaluation of error types for grammatical error correction[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,Vancouver,Jul 30-Aug 4,2017:793-805. [29] NAPOLES C,SAKAGUCHI K,POST M,et al.Ground truth for grammatical error correction metrics[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,Beijing,Jul 26-31,2015.Red Hook:Association for Computational Linguistics,2015:588-593. [30] MUTTON A,DRAS M,WAN S,et al.Gleu:automatic evaluation of sentence-level fluency[C]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,Prague,Jun 25-27,2007:344-351. [31] CHOLLAMPATT S,NG H.A reassessment of reference-based grammatical error correction metrics[C]//Proceedings of the 27th International Conference on Computational Linguistics,Santa Fe,New Mexico,USA,2018:2730-2741. [32] RAUF S A,SAEED R,KHAN N S,et al.Automated grammatical error correction:a comprehensive review[J].NUST Journal of Engineering Sciences,2017,10(2):72-85. [33] BHIRUD N S.Grammar checkers for natural languages:a review[J].International Journal on Natural Language Computing,2017,6(4):1-13. [34] MADI N,AL-KHALIFA H S.Grammatical error checking systems:a review of approaches and emerging directions[C]//2018 Thirteenth International Conference on Digital Information Management,Berlin,Germany,Sept 24-26,2018:142-147. [35] SONI M,THAKUR J S.A systematic review of automated grammar checking in english language[EB/OL].(2018)[2021-07-15].https://arxiv.org/abs/1804.00540. [36] LóPEZ-HERNáNDEZ J,ALMELA á,VALENCIA-GARCíA R.Automatic spelling detection and correction in the medical domain:a systematic literature review[C]//5th International Conference on Technologies and Innovation,2019:95-108. [37] WANG Y,WANG Y,LIU J,et al.A comprehensive survey of grammar error correction[EB/OL].(2020)[2021-07-20].https://arxiv.org/abs/2005.06600. [38] GRUNDKIEWICZ R,JUNCZYS-DOWMUNT M,HEAFIELD K.Neural grammatical error correction systems with unsupervised pre-training on synthetic data[C]//Proceedings of the 14th Workshop on Innovative Use of NLP for Building Educational Applications,2019:252-263. [39] KATSUMATA S,KOMACHI M.Unsupervised grammatical error correction using a synthetic comparable corpus[C]//Proceedings of the 14th Workshop on Innovative Use of NLP for Building Educational Applications,2019:134-138. [40] XU S Y,ZHANG J H,CHEN J,et al.Erroneous data generation for grammatical error correction[C]//Proceedings of the 14th Workshop on Innovative Use of NLP for Building Educational Applications,2019:149-158. [41] KIYONO S,SUZUKI J,MIZUMOTO T,et al.Massive exploration of pseudo data for grammatical error correction[J].IEEE-ACM Transactions on Audio Speech and Language Processing,2020,28:2134-2145. [42] KIYONO S,SUZUKI J,MITA M,et al.An empirical study of incorporating pseudo data into grammatical error correction[EB/OL].(2019)[2021-07-15].https://arxiv.org/abs/1909.00502. [43] WANG L,ZHENG X.Improving grammatical error correction models with purpose-built adversarial examples[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,Nov 16-20,2020:2858-2869. [44] ZHAO W,WANG L,SHEN K,et al.Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data[EB/OL].(2019)[2021-07-15].https://arxiv.org/abs/1903.00138. [45] XIE Z,GENTHIAL G,XIE S,et al.Noising and denoising natural language:diverse backtranslation for grammar correction[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,New Orleans,Louisiana,Jun 1-6,2018:619-628. [46] STAHLBERG F,KUMAR S Synthetic data generation for grammatical error correction with tagged corruption models[EB/OL].(2021)[2021-07-15].https://arxiv.org/abs/2105.13318. [47] MITA M,YANAKA H.Do grammatical error correction models realize grammatical generalization?[EB/OL].(2021)[2021-07-15].https://arxiv.org/abs/2106.03031. [48] YAMASHITA I,KATSUMATA S,KANEKO M,et al.Cross-lingual transfer learning for grammatical error correction[C]//Proceedings of the 28th International Conference on Computational Linguistics,Barcelona,Spain,Dec 8-13,2020:4704-4715. [49] HINSON C,HUANG H H,CHEN H H.Heterogeneous recycle generation for Chinese grammatical error correction[C]//Proceedings of the 28th International Conference on Computational Linguistics,Barcelona,Spain,Dec 8-13,2020:2191-2201. [50] LI Z,PARNOW K B,ZHANG Z,et al.Cross-lingual transfer learning for pre-trained contextualized language models[EB/OL].(2021)[2021-07-15].https://openreview.net/forum?id=1WF-fPvY_jQ. [51] WANG B,HIROTA K R,LIU C,et al.An approach to nmt re-ranking using sequence-labeling for grammatical error correction[J].Journal of Advanced Computational Intelligence and Intelligent Informatics,2020,24(4):557-567. [52] TARNAVSKYI M,KOSTIANTYN O.Improving sequence tagging approch for grammatical error correction[D].Lviv:Ukrainian Catholic University,2021. [53] KHAYRALLAH H,KOEHN P On the impact of various types of noise on neural machine translation[EB/OL].(2018)[2021-07-15].https://arxiv.org/abs/1805.12282. [54] JUNCZYS-DOWMUNT M.Dual conditional cross-entropy filtering of noisy parallel corpora[EB/OL].(2018)[2021-07-15].https://arxiv.org/abs/1809.00197. [55] GE T,WEI F,ZHOU M.Fluency boost learning and inference for neural grammatical error correction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,Melbourne,Australia,Jul 15-20,2018:1055-1065. [56] WANG W,WATANABE T,HUGHES M,et al.Denoising neural machine translation training with trusted data and online data selection[EB/OL].(2018)[2021-07-15].https://arxiv.org/abs/1809.00068. [57] LICHTARGE J,ALBERTI C,KUMAR S.Data weighted training strategies for grammatical error correction[J].Transactions of the Association for Computational Linguistics,2020,8:634-646. [58] KOYAMA A,HOTATE K,KANEKO M,et al.Comparison of grammatical error correction using back-translation models[EB/OL].(2021)[2021-07-15].https://arxiv.org/abs/2104. 07848. [59] KATSUMATA S,KOMACHI M.Stronger baselines for grammatical error correction using pretrained encoder-decoder model[EB/OL].(2020)[2021-07-15].https://arxiv.org/abs/2005.11849. [60] MADNANI N,TETREAULT J,CHODOROW M.Exploring grammatical error correction with not-so-crummy machine translation[C]//Proceedings of the Seventh Workshop on Building Educational Applications Using NLP,Montréal,Jun 7,2012.Madison:Association for Computational Linguistics,2012:44-53. [61] WHITE M,ROZOVSKAYA A.A comparative study of synthetic data generation methods for grammatical error correction[C]//Proceedings of 15th Workshop on Innovative Use of NLP for Building Educational Applications,2020:198-208. [62] DEVLIN J,CHANG M W,LEE K,et al.Bert:pre-training of deep bidirectional transformers for language understanding[EB/OL].(2018)[2021-07-15].https://arxiv.org/abs/1810.04805. [63] LEE M,SHIN H,LEE D,et al.Korean grammatical error correction based on transformer with copying mechanisms and grammatical noise implantation methods[J].Sensors(Basel),2021,21(8). [64] ZHU J,XIA Y,WU L,et al.Incorporating bert into neural machine translation[EB/OL].(2020)[2021-07-15].https://arxiv.org/abs/2002.06823. [65] PARNOW K,LI Z,ZHAO H.Grammatical error correction:more data with more context[C]//2020 International Conference on Asian Language Processing,Kuala Lumpur,Dec 4-6,2020:24-29. [66] GE T,ZHANG X X,WEI F R,et al.Automatic grammatical error correction for sequence-to-sequence text generation:An empirical study[C]//57th Annual Meeting of the Association for Computational Linguistics,Florence,Italy,Jul 28-Aug 2,2019:6059-6064. [67] LI S,ZHAO J B,SHI G R,et al.Chinese grammatical error correction based on convolutional sequence to sequence model[J].IEEE Access,2019,7:72905-72913. [68] HE S,LI Z,ZHAO H,et al.Syntax for semantic role labeling,to be,or not to be[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,Melbourne,Australia,Jul 15-20,2018:2061-2071. [69] LI Z,HE S,CAI J,et al.A unified syntax-aware framework for semantic role labeling[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,Brussels,Belgium,Oct 31-Nov 4,2018:2401-2411. [70] RAHEJA V,ALIKANIOTIS D.Adversarial grammatical error correction[EB/OL].(2020)[2021-07-15].https://arxiv.org/abs/2010.02407. [71] OMELIANCHUK K,ATRASEVYCH V,CHERNODUB A,et al.Gector-grammatical error correction:tag,not rewrite[C]//Proceedings of 15th Workshop on Innovative Use of NLP for Building Educational Applications,2020:163-170. [72] XUE L,CONSTANT N,ROBERTS A,et al.Mt5:a massively multilingual pre-trained text-to-text transformer[EB/OL].(2020)[2021-07-15].https://arxiv.org/abs/2010.11934. [73] STAHLBERG F,KUMAR S.Seq2edits:sequence transduction using span-level edit operations[EB/OL].(2020)[2021-07-15].https://arxiv.org/abs/2009.11136. [74] FLACHS S,LACROIX O,YANNAKOUDAKIS H,et al.Grammatical error correction in low error density domains:a new benchmark and analyses[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,Nov 16-20,2020:8467-8478. [75] DEVLIN J,CHANG M W,LEE K,et al.Bert:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT 2019,Minneapolis,Jun 2-7,2019:4171-4186. [76] CONNEAU A,KHANDELWAL K,GOYAL N,et al.Unsupervised cross-lingual representation learning at scale[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,Jul 5-10,2020:8440-8451. [77] CHI E A,HEWITT J,MANNING C D.Finding universal grammatical relations in multilingual bert[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,Jul 5-10,2020:5564-5577. [78] HOTATE K,KANEKO M,KOMACHI M.Generating diverse corrections with local beam search for grammatical error correction[C]//Proceedings of the 28th International Conference on Computational Linguistics,Barcelona,Spain,Dec 8-13,2020:2132-2137. [79] FELICE M,BRISCOE T.Towards a standard evaluation method for grammatical error detection and correction[C]//Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Denver,May 31-Jun 5,2015:578-587. [80] DAHLMEIER D,NG H T.Better evaluation for grammatical error correction[C]//Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Montréal,Jun 3-8,2012:568-572. [81] ASANO H,MIZUMOTO T,INUI K.Reference-based metrics can be replaced with reference-less metrics in evaluating grammatical error correction systems[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing,Taipei,China,Nov 27-Dec 1,2017:343-348. [82] YOSHIMURA R,KANEKO M,KAJIWARA T,et al.Some:reference-less sub-metrics optimized for manual evaluations of grammatical error correction[C]//Proceedings of the 28th International Conference on Computational Linguistics,Barcelona,Spain,Dec 8-13,2020:6516-6522. [83] GOTOU T,NAGATA R,MITA M,et al.Taking the correction difficulty into account in grammatical error correction evaluation[C]//Proceedings of the 28th International Conference on Computational Linguistics,Barcelona,Spain,Dec 8-13,2020:2085-2095. [84] 张仰森,丁冰青.中文文本自动校对技术现状及展望[J].中文信息学报,1998,2(3):51-57. ZHANG Y S,DING B Q.Present condition and prospects of Chinese text automatic proofread technology[J].Journal of Chinese Information Processing,1998,2(3):51-57. [85] LIU Y,ZAN H,ZHONG M,et al.Detecting simultaneously Chinese grammar errors based on a bilstm-crf model[C]//Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications,Melbourne,Australia,Jul 19,2018:188-193. [86] WU X,HUANG P,WANG J,et al.Chinese grammatical error diagnosis system based on hybrid model[C]//Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications,Beijing,Jul 31,2015.Stroudsburg:Association for Computational Linguistics,2015:117-125. [87] CHEN P L,WU S H,CHEN L P,et al.Chinese grammatical error diagnosis by conditional random fields[C]//Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications,Beijing,Jul 31,2015.Stroudsburg:Association for Computational Linguistics,2015:7-14. [88] ZHENG B,CHE W,GUO J,et al.Chinese grammatical error diagnosis with long short-term memory networks[C]//Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications(NLPTEA2016),Osaka,Dec 12,2016:49-56. [89] HAN Y,YAN Y,HAN Y,et al.Chinese grammatical error diagnosis based on roberta-bilstm-crf model[C]//Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications,Suzhou,Dec 4,2020:97-101. [90] 杨劲男.基于神经网络的中文语法纠错关键技术研究[D].昆明:云南大学,2018. YANG J N.Research on key techniques of Chinese grammar error correction based on neural network[D].Kunming:Yunnan University,2018. [91] 邓永康.基于神经机器翻译的中文文本纠错研究[D].武汉:武汉大学,2019. DENG Y K.Research of Chinese text correction based on neural machine translation[D].Wuhan:Wuhan University,2019. [92] 王辰成.基于序列生成模型的语法纠错技术研究[D].北京:北京工业大学,2020. WANG C C.Research in grammatical error correction based on sequence generation model[D].Beijing:Beijing University of Technology,2020. [93] 汤泽成,纪一心,赵怡博,等.基于字词粒度噪声数据增强的中文语法纠错[C]//第二十届中国计算语言学大会,呼和浩特,2021:813-824. TANG Z C,JI Y X,ZHAO Y B,et al.Chinese grammatical error correction enhanced by data augmentation from word and character levels[C]//Proceedings of the 20th Chinese National Conference on Computational Linguistics,Huhhot,Aug 13-15,2021:813-824. [94] 高印权.基于深度学习的文本语法自动纠错模型研究与实现[D].成都:电子科技大学,2020. GAO Y Q.Research and implementation of grammar error correction model based on deep learning[D].Chengdu:University of Electronic Science and Technology of China,2020. [95] 段建勇,袁阳,王昊.基于transformer局部信息及语法增强架构的中文拼写纠错方法[J].北京大学学报:自然科学版,2021,57(1):7. DUAN J Y,YUAN Y,WANG H.Chinese spelling correction method based on transformer local information and syntax enhancement architecture[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2021,57(1):7. [96] WANG H,ZHANG Y,SUN X.Chinese grammatical error diagnosis based on sequence tagging methods[C]//Journal of Physics:Conference Series,IOP Publishing,2021:012027. [97] 孙邱杰,梁景贵,李思.基于bart噪声器的中文语法纠错模型[J/OL].计算机应用,2021[2021-10-19].http://kns.cnki.net/kcms/detail/51.1307.TP.20210816.1549.010.html. SUN Q J,LIANG J G,LI S.Chinese grammatical error correction model based on bart noiser[J/OL].Journal of Computing Applications,2021[2021-10-19].http://kns.cnki.net/kcms/detail/51.1307.TP.20210816.1549.010.html. [98] ZHAO Y,JIANG N,SUN W,et al.Overview of the nlpcc 2018 shared task:grammatical error correction[C]//CCF International Conference on Natural Language Processing and Chinese Computing,Hohhot,Aug 26-30,2018:439-445. [99] RAO G,ZHANG B,XUN E,et al.Ijcnlp-2017 task 1:Chinese grammatical error diagnosis[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing,Taipei,China,Nov 27-Dec 1,2017:1-8. |
[1] | 孙晓东, 杨东强. 数据增广策略在英语语法纠错中的应用综述[J]. 计算机工程与应用, 2022, 58(7): 43-54. |
[2] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[3] | 孙雨新, 曹晓梅, 王少辉. 基于情境信息迁移的因子分解机推荐算法[J]. 计算机工程与应用, 2022, 58(6): 134-141. |
[4] | 疏雅丽, 张国伟, 王博, 徐晓康. 基于深层连接注意力机制的田间杂草识别方法[J]. 计算机工程与应用, 2022, 58(6): 271-277. |
[5] | 董朋欣, 董安国, 李楚婷, 梁苗苗. 基于全卷积网络和自编码的高光谱图像分类[J]. 计算机工程与应用, 2022, 58(5): 256-263. |
[6] | 陶启生, 彭成, 满君丰, 刘翊. 用于轴承故障诊断的两步迁移学习法[J]. 计算机工程与应用, 2022, 58(2): 303-312. |
[7] | 张欣, 朱江. 面向样本不平衡的网络安全态势要素获取[J]. 计算机工程与应用, 2022, 58(1): 134-142. |
[8] | 桑江徽,姜海燕. 基于联合分布的多标记迁移学习[J]. 计算机工程与应用, 2021, 57(9): 154-161. |
[9] | 许德刚,王露,李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25. |
[10] | 徐可文,许波,吴英,徐浩然. 机器学习在超声图像中的应用综述[J]. 计算机工程与应用, 2021, 57(4): 11-17. |
[11] | 艾山·吾买尔,斯拉吉艾合麦提·如则麦麦提,西热艾力·海热拉,刘文其,吐尔根·依布拉音,汪烈军,瓦依提·阿不力孜. 带标记音节的双向维汉神经机器翻译方法[J]. 计算机工程与应用, 2021, 57(4): 161-168. |
[12] | 徐志京,汪毅. 青光眼眼底图像的迁移学习分类方法[J]. 计算机工程与应用, 2021, 57(3): 144-149. |
[13] | 姚可欣,曹卫群. Trans-Net:基于迁移学习的手写简笔画识别[J]. 计算机工程与应用, 2021, 57(3): 182-188. |
[14] | 高爽,徐巧枝. 迁移学习方法在医学图像领域的应用综述[J]. 计算机工程与应用, 2021, 57(24): 39-50. |
[15] | 黄英来,艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 178-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||