计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 165-173.DOI: 10.3778/j.issn.1002-8331.2007-0230
黄文斌,陈仁文,袁婷婷
HUANG Wenbin, CHEN Renwen, YUAN Tingting
摘要:
无人机设备算力低下,深度模型计算量过大不适合直接部署,航拍图像目标小并且密集,模型对目标识别分类效果也不佳。为了提高深度模型航拍目标检测的精度和速度,降低计算量。对YOLOv3-SPP模型进行改进,将GIoU代替平方和用作定位损失,提高定位精度。提出了一种数据集优化和数据增强方法。再针对特定类别按照权值进行采样处理均衡化类别数量。随机组合不同场景样本组成批训练,提高模型训练效率和检测鲁棒性。再对模型进行压缩,在BN层添加缩放因子进行稀疏训练和通道剪枝的基础上,通过缩放因子衡量模型残差层重要性,修剪不重要残差,进一步减小前向推理层数和参数。实验表明,模型参数量减小了95.7%,模型大小减小95.82%,同等算力下模型推理速度提高为原来3倍。且精度和速度均高于最新YOLOv5系列轻量模型。