计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (20): 133-141.DOI: 10.3778/j.issn.1002-8331.2012-0064
王建军,魏江,梅少辉,王健
WANG Jianjun, WEI Jiang, MEI Shaohui, WANG Jian
摘要:
针对YOLOv3目标检测算法在遥感图像小目标检测方面精度较低的缺点,提出了一种改进的YOLOv3目标检测算法——YOLOv3-CS。根据对backbone中不同尺度特征重要性的分析重构了backbone,即增加具有丰富位置信息的浅层特征对应的卷积层深度,以此增强backbone对小目标特征的提取能力,引入RFB结构增大浅层特征图的感受野来提升小目标检测精度,优化了anchor boxes及其分配原则。在RSOD数据集的实验结果表明,YOLOv3-CS算法与YOLOv3相比,mAP提高6.49%,F1提高4.85%,所需存储空间降低12.58%,其中backbone的改进和RFB的引入对小目标检测的精度提升较为明显,说明提出的目标检测算法在遥感图像小目标检测方面有较高的优势。