计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (16): 134-141.DOI: 10.3778/j.issn.1002-8331.2005-0008
李巍,戴朝霞,张向东,张亮,沈沛意
LI Wei, DAI Zhaoxia, ZHANG Xiangdong, ZHANG Liang, SHEN Peiyi
摘要:
近年来,深度学习在卫星影像目标检测领域得到了快速的发展,如何精准高效定位目标物体是卫星影像目标检测研究中的主要难点。提出了一种基于旋转矩形空间的YOLOv3改进算法来精准定位卫星影像目标,对原有网络进行改进,增加角度变换的数据预处理过程,防止实例角度变化对网络训练造成影响。使用双旋转坐标进行回归训练,增加了角度锚点,提高了网络对卫星目标的检测有效性。提出了基于旋转矩形空间的非极大值抑制改进算法,可以有效去除多余的旋转预测框。实验结果表明,改进YOLOv3算法相较于原始YOLOv3算法拥有更好的可视化效果,可以有效准确地定位卫星影像的目标物体,有效避免了密集场景下预测框的遮挡问题,在保证实时性的前提下,将均值平均精度提高了0.8个百分点。