计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (10): 1-9.DOI: 10.3778/j.issn.1002-8331.2101-0402

• 热点与综述 • 上一篇    下一篇

基于深度学习的网络流量预测研究综述

康梦轩,宋俊平,范鹏飞,高博文,周旭,李琢   

  1. 1.中国科学院 计算机网络信息中心,北京 100190
    2.中国科学院大学,北京 100049
    3.中国联合网络通信有限公司 北京市分公司,北京 100038
  • 出版日期:2021-05-15 发布日期:2021-05-10

Survey of Network Traffic Forecast Based on Deep Learning

KANG Mengxuan, SONG Junping, FAN Pengfei, GAO Bowen, ZHOU Xu, LI Zhuo   

  1. 1.Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.China United Network Communications Co., Ltd., Beijing Branch, Beijing 100038, China
  • Online:2021-05-15 Published:2021-05-10

摘要:

精准地预判网络流量变化趋势可以帮助运营商准确预估网络的使用情况,合理分配并高效利用网络资源,以满足日益增长且多样化的用户需求。以深度学习算法在网络流量预测领域的进展为线索,阐述了网络流量预测的评价指标和目前公开的网络流量数据集及应用,具体分析了网络流量预测中常用的深度信念网络、卷积神经网络、循环神经网络和长短时记忆网络共四种深度学习方法,并重点介绍了近年来针对不同问题所提出的改进神经网络模型,总结了各模型特点及应用场景。最后对网络流量预测未来发展进行了展望。

关键词: 深度学习, 网络流量预测, 深度信念网络, 卷积神经网络, 长短时记忆网络

Abstract:

Precisely predicting the trend of network traffic changes can help operators accurately predict network usage, correctly allocate and efficiently use network resources to meet the growing and diverse user needs. Taking the progress of deep learning algorithms in the field of network traffic prediction as a clue, this paper firstly elaborates the evaluation indicators of network traffic prediction and the current public network traffic data sets. Secondly, this paper specifically analyzes four deep learning methods commonly used in network traffic prediction:deep belief networks, convolutional neural network, recurrent neural network, and long short term memory network, and focuses on the integrated neural network models used in recent years for different problems. The characteristics and application scenarios of each model are summarized. Finally, the future development of network traffic forecast is prospected.

Key words: deep learning, network traffic prediction, deep belief networks, convolutional neural network, long short term memory network