计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (7): 198-208.DOI: 10.3778/j.issn.1002-8331.2008-0137
马巧梅,王明俊,梁昊然
MA Qiaomei, WANG Mingjun, LIANG Haoran
摘要:
针对在光照、多车辆和低分辨率等复杂场景下车牌定位困难、检测速度慢和精度低等问题,提出了一种改进YOLOv3的方法。采用K-means++方法对实例的标签信息进行聚类分析获取新的anchor尺寸,通过改进后的精简特征提取网络(DarkNet41)来提高模型的检测效率并降低计算消耗。此外,改进了多尺度特征融合,由3尺度预测增加至4尺度预测并在检测网络中加入了改进后的Inception-SE结构来提高检测的精度,选取了CIoU作为损失函数。预处理方面用MSR(Multi-Scale Retinex)算法对数据进行增强。实验分析表明,采用该算法mAP(均值平均精度)达到了98.84%,检测速度达到36.4帧/s,与YOLOv3模型以及其他算法相比具有更好的准确性和实时性。