计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (9): 142-147.DOI: 10.3778/j.issn.1002-8331.1901-0050
曹军博,叶霞,许飞翔,尹列东
CAO Junbo,YE Xia,XU Feixiang,YIN Liedong
摘要:
大数据时代,文本的情感倾向对于文本潜在价值挖掘具有重要意义,然而人工方法很难有效挖掘网络上评论文本的潜在价值,随着计算机技术的快速发展,这一问题得到了有效解决。在文本情感分析中,获取词语的情感信息对于情感分析至关重要,词向量方法一般仅对词语的语法语义进行建模,但是忽略了词语的情感信息,无法更好地进行情感分析。通过TF-IDF算法模型获得赋权矩阵,构建停用词表,同时根据赋权矩阵生成Huffman树作为改进的CBOW算法的输入,引入情感词典生成情感标签辅助词向量生成,使词向量具有情感信息。实验结果表明,提出的方法对评论文本中获得的词向量能够较好地表达情感信息,情感分类结果优于传统模型。因此,该模型在评论文本情感分析中可以有效提升文本情感分类效果。