计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (2): 18-28.DOI: 10.3778/j.issn.1002-8331.1910-0300

• 热点与综述 • 上一篇    下一篇

基于深度学习的图像语义分割技术研究进展

梁新宇,罗晨,权冀川,肖铠鸿,高伟嘉   

  1. 1.陆军工程大学 指挥控制工程学院,南京 210007
    2.陆军工程大学 通信工程学院,南京 210007
    3.中国人民解放军68023部队
  • 出版日期:2020-01-15 发布日期:2020-01-14

Research on Progress of Image Semantic Segmentation Based on Deep Learning

LIANG Xinyu, LUO Chen, QUAN Jichuan, XIAO Kaihong, GAO Weijia   

  1. 1.College of Command & Control Engineering, Army Engineering University of PLA, Nanjing 210007, China
    2.College of Communications Engineering, Army Engineering University of PLA, Nanjing 210007, China
    3.Unit 68023 of PLA, China
  • Online:2020-01-15 Published:2020-01-14

摘要: 自FCN网络在2014年提出后,SegNet、DeepLab等一系列关于图像语义分割的深度学习架构被相继提出。与传统方法相比,这些架构效果更好、运算速度更快,已经能够运用于自然图像的分割处理。围绕图像语义分割技术,对常用的数据集和典型网络架构进行了梳理分析,对2017年以来的新进展进行了综合研究,利用主流评价指标对主要模型的语义分割效果进行了比较和分析。对语义分割技术面临的挑战以及可能的发展趋势进行了展望。

关键词: 深度学习, 图像分割, 语义分割

Abstract: Since the FCN network was proposed in 2014, a series of deep learning architectures for image semantic segmentation such as SegNet and DeepLab have been proposed. Compared with the traditional methods, these architectures are better and faster, and can be applied to the segmentation of natural images. This paper focuses on the image semantic segmentation technology. The commonly used data sets and typical network architectures are analyzed. And a comprehensive study is conducted about the new progress since 2017. The current evaluation indicators are used to compare and analyze the semantic segmentation effects of the main models. Finally, the challenges faced by semantic segmentation technology and the possible development trends are prospected.

Key words: deep learning, image segmentation, semantic segmentation