计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (7): 162-167.DOI: 10.3778/j.issn.1002-8331.1712-0343

• 模式识别与人工智能 • 上一篇    下一篇

基于随机森林的无人机检测方法

刘  阳1,杜华军2,岳子涵1,马  杰1,吕  武3   

  1. 1.华中科技大学 多谱信息处理技术国家重点实验室,武汉 430074
    2.北京航天自动控制研究所 宇航智能控制技术国家级重点实验室,北京 100854
    3.中国船舶工业系统工程研究院,北京 100094
  • 出版日期:2019-04-01 发布日期:2019-04-15

Unmanned Aerial Vehicle Detection Method Based on Random Forest

LIU Yang1, DU Huajun2, YUE Zihan1, MA Jie1, LV Wu3   

  1. 1.Nation Key Laboratory of Science and Technology on Multi-Spectral Information Processing, Huazhong University of Science and Technology, Wuhan 430074, China
    2.National Key Laboratory of Science and Technology on Aerospace Intelligent Control, Beijing Aerospace Automatic Control Institute, Beijing 100854, China
    3.China State Shipbuilding Corporation Systems Engineering Research Institute, Beijing 100094, China
  • Online:2019-04-01 Published:2019-04-15

摘要: 随着低成本小型无人机的普及带来了一系列的严重问题并且难以监管。并且,由于环境物体的扰动、摄像机的抖动及采样噪声等因素导致现有方法在可见光图像下对无人机等小目标检测准确率低。针对上述问题,提出了一种基于随机森林的无人机检测方法。该方法采集可见光下的图像序列,使用混合高斯模型和聚类检测算法检测图像中的运动小目标,继而通过随机森林算法融合目标的多种特征进行目标的判别,最终得到检测目标。实验结果表明,该方法可有效地检测出无人机运动小目标并大幅提高检测的精确率。

关键词: 多特征联合, 随机森林算法, 目标检测

Abstract: The popularity of low cost and small UAVs brings a series of serious problems and is difficult to supervise. Moreover, due to the disturbance of environmental objects, camera’s jitter and sampling noise, the existing method can detect small targets such as UAVs in low accuracy under visible light. In order to solve the above problems, a UAVs detect method is proposed by random forest. This method collects the image sequences under visible light, and detects small moving targets in the image by using gaussian?mixture?model and clustering detection algorithm. Then, the targetis discriminated to fuse target multi features by using random forest algorithm, and finally the detection target is obtained. The experimental results show that this method can detect small target of unmanned aerial vehicle and improve the accuracy of detection.

Key words: multi features, random forest algorithm, target detection