计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (10): 251-257.DOI: 10.3778/j.issn.1002-8331.1512-0054
冯钦林,杨志豪,林鸿飞
FENG Qinlin, YANG Zhihao, LIN Hongfei
摘要: 随着生物医学文献的快速增长,在海量的生物医学文献中存在大量有关疾病、病症和治疗物质的信息,这些信息对疾病的治疗和药物的研制有着重要的意义。针对疾病与治疗物质之间的信息抽取,重点训练两个模型,即疾病与病症模型和病症与治疗物质模型。疾病与病症模型判断一种疾病是否会存在或者导致一种生理现象的产生;病症与治疗物质模型判断一种物质是否改变人的生理现象或者生理过程。使用半监督学习的Tri-training的方法,利用大量未标注数据辅助少量有标注数据进行训练提高分类性能。实验结果表明,Tri-training方法中利用未标注数据有助于提高实验结果;且在训练过程中使用集成学习的思想将三个分类器器集成在一起,提高了学习性能。