计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (20): 69-74.
欧阳骥1,周宪政2,卓晓燕2,黄 翰2
OUYANG Ji1, ZHOU Xianzheng2, ZHUO Xiaoyan2, HUANG Han2
摘要: 传统的社团发现算法利用链接关系对社团进行划分,不利于发现社团之间的非链接关系,从而影响划分精度。研究分析了节点蕴含的文本信息,挖掘了文本信息蕴含了节点的主题信息,根据这些主题信息判断社团在主题上的关系。研究设计了优化的潜在狄利克雷分配模型对社团进行主题划分,应用优化的模块度社团发现算法对社团进行链接划分,合并成为一个能对社团进行主题划分和链接划分的主题社团发现算法。此外,还针对主题社团设计了一种评估方法,并且使用多个数据集在主题社团发现的各个阶段对算法进行了实验验证。实验结果证明,基于主题检测的社团发现算法能够正确地对社团进行主题划分和链接划分。