计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (24): 179-184.DOI: 10.3778/j.issn.1002-8331.2007-0151
吴迪,张梦甜,生龙,黄竹韵,顾明星
WU Di, ZHANG Mengtian, SHENG Long, HUANG Zhuyun, GU Mingxing
摘要:
话题演化分析是舆情监控的研究热点之一,面向微博热点话题进行演化分析,对于网络用户以及网络监管部门都有很重要的现实意义。针对在线词对主题模型(On-line Biterm Topic Model,OBTM)新旧主题混合、冗余词概率相对较高的问题,对OBTM进行改进,提出基于话题标签和先验参数的OBTM模型(Topic Labels and Prior Parameters OBTM,LPOBTM)。根据微博热点话题的话题标签,将微博文本集区分为含话题标签和不含话题标签的两类数据集,并设置不同的文档-主题先验参数;在前一时间片文档-主题概率分布的基础上,借鉴Sigmod函数对所有主题进行强度排名,从而优化当前时间片上主题-词分布的先验参数计算方法。实验结果表明,LPOBTM能够更准确地描述话题的内容演化情况,并且有更低的模型困惑度。