计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (11): 160-166.DOI: 10.3778/j.issn.1002-8331.1804-0191
程 磊,高茂庭
CHENG Lei, GAO Maoting
摘要: 针对协同过滤算法仅依赖评分矩阵产生预测,推荐准确度不高的问题,提出一种结合时间加权和LDA聚类的混合推荐算法。先构造时间柱模型,根据用户评分及时刻生成时间加权相似度,采用加权平均偏差法生成时间加权的预测评分;再对项目类型进行LDA聚类生成主题项目簇,经过概率转移生成LDA聚类的预测评分;最后通过调节因子确定两种评分的权重系数,从而线性加权生成最终评分。实验结果表明,新算法能够根据具体的近邻数目给出合理的推荐,提高推荐的准确度。