计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (36): 177-179.DOI: 10.3778/j.issn.1002-8331.2009.36.052

• 图形、图像、模式识别 • 上一篇    下一篇

改进L优化算法用于三维空间点快速精确重建

周果清,王 庆   

  1. 西北工业大学 计算机学院,西安 710129
  • 收稿日期:2009-01-05 修回日期:2009-03-11 出版日期:2009-12-21 发布日期:2009-12-21
  • 通讯作者: 周果清

Fast and precise optimal algorithm for L triangulation

ZHOU Guo-qing,WANG Qing   

  1. Department of Computer,Northwestern Polytechnical University,Xi’an 710129,China
  • Received:2009-01-05 Revised:2009-03-11 Online:2009-12-21 Published:2009-12-21
  • Contact: ZHOU Guo-qing

摘要: 多视几何中的多种问题可以通过最小化L范数误差获得全局最优解。但最小化L范数误差算法的缺点是对外点敏感,相关的改进算法虽然可以克服外点带来的影响,但计算速度较慢。提出一种改进的最小化L范数误差算法,用于从包含外点的图像序列中快速精确重建三维空间点。真实测试图像的实验结果证明该算法可以在包含外点的情况下获得空间点的全局最优解,相比其他算法速度有较大的提高。

关键词: 计算机视觉, 三维重建, 无穷范数最小, 外点, 二次锥面规划

Abstract: Various geometric vision problems can be solved optimally by minimizing L-norm error.However,the approach based on L-norm error is often sensitive to outliers.Although some improved algorithms can overcome the impact of outliers,it is too time-consuming.This paper proposes a new fast and precise method based on refining L-norm minimization framework for the triangulation problem from images sequence.Experimental results have shown that the proposed method can achieve global optimization and is faster than traditional methods.

Key words: computer vision, triangulation, L-minimization, outliers, Second-Order Cone Programming(SOCP)

中图分类号: