计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (1): 232-232.

• 工程与应用 • 上一篇    下一篇

一种改进的神经网络机械故障诊断专家系统

彭滔,汪鲁才,吴桂清,张颖   

  1. 湖南师范大学
  • 收稿日期:2006-01-05 修回日期:1900-01-01 出版日期:2007-01-01 发布日期:2007-01-01
  • 通讯作者: 汪鲁才 汪鲁才

An Improved Expert System For Mechanical Fault Diagnosis Based on L-M neural network

,,,   

  1. 湖南师范大学
  • Received:2006-01-05 Revised:1900-01-01 Online:2007-01-01 Published:2007-01-01

摘要: 针对传统BP神经网络训练中收敛速度较慢的缺点,提出一种基于L-M算法的神经网络应用于机械设备故障诊断专家系统。论述了神经网络的专家系统结构,并以7216圆锥轴承试验研究为例,建立了基于该算法的故障诊断模型。仿真结果表明:该模型显著缩短了训练时间,具有较高的准确性。运用该神经网络专家系统进行机械故障诊断是有效的。

关键词: 神经网络, L-M算法, 专家系统, 故障诊断

Abstract: An improved neural network based on L-M algorithm was applied to fault diagnosis expert system against to the slow convergence rate of conventional BP neural network .The expert system structure based on neural network was introduced, and a fault diagnosis model was designed combining with 7216 tapered bearings experiment .Simulation results indicated this model remarkably reduced the training time, with its relatively high accuracy, surpassed the conventional BP neural network model. It was feasible for mechanical fault diagnosis.

Key words: neural network, L-M algorithm, expert system, fault diagnosis