计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (28): 210-213.
王红军,徐小力
WANG Hong-jun,XU Xiao-li
摘要: 数据挖掘技术能够从大量、不完全、有噪声、模糊、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的本质的规律。为了有效地发现旋转机械故障诊断过程中的故障征兆知识,引入数据挖掘技术和方法。针对旋转机械,构建了基于重复增量修枝算法RIPPER(Repeated Incremental Pruning to Produce Error Reduction)的故障诊断知识获取系统。通过收集故障现象并整理成由故障征兆、故障类型等组成的故障信息样本,应用RIPPER算法对故障进行分析得到故障诊断规则集文件,实现故障诊断系统知识的获取和自动更新,并能对旋转机械的常见故障进行诊断,验证了算法的合理性。