计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (21): 43-46.DOI: 10.3778/j.issn.1002-8331.2010.21.012
孟祥萍1,王圣镔2
MENG Xiang-ping1,WANG Sheng-bin2
摘要: 针对多Agent协作强化学习中存在的行为和状态维数灾问题,以及行为选择上存在多个均衡解,为了收敛到最佳均衡解需要搜索策略空间和协调策略选择问题,提出了一种新颖的基于量子理论和蚁群算法的多Agent协作学习算法。新算法首先借签了量子计算理论,将多Agent的行为和状态空间通过量子叠加态表示,利用量子纠缠态来协调策略选择,利用概率振幅进行动作探索,加快学习速度。其次,根据蚁群算法,提出“脚印”思想来间接增强Agent之间的交互。最后,对新算法的理论分析和实验结果都证明了改进的Q学习是可行的,并且可以有效地提高学习效率。
中图分类号: