[1] WANG L, KONIUSZ P. Self-supervising action recognition by statistical moment and subspace descriptors[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 4324-4333.
[2] DHIMAN C, VISHWAKARMA D K, AGGARWAL P. Skeleton based activity recognition by fusing part-wise spatio-temporal and attention driven residues[J]. arXiv:1912.00576, 2019.
[3] KONIUS P, WANG L, CHERIAN A. Tensor representations for action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(2): 648-665.
[4] 毕春艳, 刘越. 基于深度学习的视频人体动作识别综述[J]. 图学学报, 2023, 44(4): 625-639.
BI C Y, LIU Y. A survey of video human action recognition based on deep learning[J]. Journal of Graphics, 2023, 44(4): 625-639.
[5] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 7444-7452.
[6] QIN Z, LIU Y, JI P, et al. Fusing higher-order features in graph neural networks for skeleton-based action recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4783-4797.
[7] LI C, ZHONG Q, XIE D, et al. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation[J]. arXiv:1804.06055, 2018.
[8] CHEN Y, ZHANG Z, YUAN C, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 13359-13368.
[9] 王仕宸, 黄凯, 陈志刚, 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87.
WANG S C, HUANG K, CHEN Z G, et al. A survey of 3D human pose estimation based on deep learning[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(1): 74-87.
[10] SHI L, ZHANG Y, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12026-12035.
[11] ZHANG J, TU Z, YANG J, et al. MixSTE: Seq2seq mixed spatio-temporal encoder for 3D human pose estimation in video[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13232-13242.
[12] YE F, PU S, ZHONG Q, et al. Dynamic GCN: context enriched topology learning for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 55-63.
[13] LIU Z, ZHANG H, CHEN Z, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 143-152.
[14] LEE J, LEE M, LEE D, et al. Hierarchically decomposedgraph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 10444-10453.
[15] 曹毅, 吴伟官, 李平, 等. 基于时空特征增强图卷积网络的骨架行为识别[J]. 电子与信息学报, 2023, 45(8): 3022-3031.
CAO Y, WU W G, LI P, et al. Skeleton action recognition based on spatio-temporal feature enhanced graph convolutional network[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3022-3031.
[16] PLIZZARI C, CANNICI M, MATTEUCCI M. Skeleton-based action recognition via spatial and temporal transformer networks[J]. Computer Vision and Image Understanding, 2021, 208: 103219.
[17] ZHANG Y, WU B, LI W, et al. STST: spatial-temporal specialized transformer for skeleton-based action recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 3229-3237.
[18] SHI L, ZHANG Y, CHENG J, et al. Decoupled spatial-temporal attention network for skeleton-based action recognition[J]. arXiv:2007.03263, 2020.
[19] 郭宗洋, 刘立东, 蒋东华, 等. 基于语义引导神经网络的人体动作识别算法[J]. 图学学报, 2024, 45(1): 26-34.
GUO Z, LI L, JIANG D, et al. Human action recognition algorithm based on semantics-guided neural networks[J]. Journal of Graphics, 2024, 45(1): 26-34.
[20]赵登阁, 智敏. 用于人体动作识别的多尺度时空图卷积算法[J]. 计算机科学与探索, 2023, 17(3): 719-732.
ZHAO D G, ZHI M. A multi-scale spatio temporal graph convolution algorithm for human action recognition[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(3): 719-732.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[22] SONG Y F, ZHANG Z, SHAN C, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022: 1474-1488.
[23] CHENG K, ZHANG Y, HE X, et al. Extremely lightweight skeleton-based action recognition with shiftGCN++[J]. IEEE Transactions on Image Processing, 2021(30): 7333-7348.
[24] XU K, YE F, ZHONG Q, et al. Topology-aware convolutional neural network for efficient skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 2866-2874.
[25] SI C, CHEN W, WANG W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1227-1236.
[26] DUAN H, WANG J, CHEN K, et al. DG-STGCN: dynamic spatial-temporal modeling for skeleton-based action recognition[J]. arXiv:2210.05895, 2022.
[27] WANG L, KOUNIUSZ P. 3Mformer: multi-order multi-mode transformer for skeletal action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 5620-5631. |