计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (18): 180-187.DOI: 10.3778/j.issn.1002-8331.2112-0508
张富凯,贺天成
ZHANG Fukai, HE Tiancheng
摘要: 现有人体姿态动作识别方法忽视前期姿态估计算法的作用,没有充分提取动作特征,提出一种结合轻量级Openpose和注意力引导图卷积网络的动作识别方法。该方法包含基于shufflenet的Openpose算法和基于不同尺度邻接矩阵注意力的图卷积算法。输入视频由轻量Openpose处理得到18个人体关键点信息,表达为基础时空图数据形式。节点的不同尺度邻居信息对应的邻接矩阵通过自注意力机制计算影响力,将各尺度邻接矩阵加权合并输入图卷积网络提取特征。提取到的鉴别特征通过全局平均池化和softmax分类器输出动作类别。在Le2i Fall Detection数据集和自定义的UR-KTH数据集上的实验表明,动作识别的准确率分别为95.52%和95.07%,达到了预期效果。