[1] 尹泽中, 李功权. 三维场叠加视频流的电子围栏越界检测方法[J]. 测绘通报, 2024(6): 103-108.
YIN Z Z, LI G Q. Electronic fence out-of-bounds detection method based on 3D field superimposed video stream[J]. Bulletin of Surveying and Maping, 2024(6): 103-108.
[2] 夏长庚, 金贵红, 石家德. 便携式电子围栏在变电站作业区 域周界应用[J]. 电子技术与软件工程, 2019(24): 203-204.
XIA C G, JIN G H, SHI J D, et al. Portable electronic fence is applied in the perimeter of the substation operation area[J].
Electronic Technology & Software Engineering, 2019(24): 203-204.
[3] 李其元. 基于STM32的张力式电子围栏的软硬件开发 [D]. 绵阳: 西南科技大学, 2017.
LI Q Y. The hardware and software development of tension type electronic fence base on chip STM32[D]. Mianyang: Southwest University of Science and Technology, 2017.
[4] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[5] LYU S, LI R, ZHAO Y, et al. Green citrus detection and counting in orchards based on YOLOv5-CS and AI edge system[J]. Sensors, 2022, 22(2): 576.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[8] WOJKE N, BEWLEY A, PAULUS D. Simple online and real-time tracking with & a deep association metric [C]//Proceedings of the 2017 IEEE International Conference on Image Processing, 2017: 3645-3649.
[9] DU Y H, ZHAO Z C, SONG Y, et al. StrongSORT: make deepsort great again[J]. IEEE Transactions on Multimedia, 2023, 25: 8725-8737.
[10] 陈柳, 陈明举, 薛智爽, 等. 轻量化高精度卷积神经网络的安全帽识别方法[J]. 计算机工程与应用, 2021, 57(22): 177-181.
CHEN L, CHEN M J, XUE Z S, et al. Lightweight and high-precision convolutional neural network for helmet recognition method[J]. Computer Engineering and Applications, 2021, 57(22): 177-181.
[11] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[12] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺 陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[13] ZHOU J J, ZHANG B H, YUAN X L, et al. YOLO-CIR: the network based on YOLO and ConvNeXt for infrared object detection[J]. Infrared Physics and Technology, 2023: 104703.
[14] 郑晓, 王淑琴, 张文聪, 等. 基于深度学习的安全帽监管系 统[J]. 计算机系统应用, 2021, 30(11): 118-126.
ZHENG X, WANG S Q, ZHANG W C, et al. Safety helmet supervision system based on deep learning[J]. Computer Systems & Applications, 2021, 30(11): 118-126.
[15] BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 883-892.
[16] 杨学杰, 李思毛, 李建业, 等. 面向巡检机器人的电力设备 状态检测算法研究[J]. 计算机技术与发展, 2021, 31(3): 201-205.
YANG X J, LI S M, LI J Y, et al. Research on algorithm for equipment condition monitoring based on inspection robot[J]. Computer Technology and Development, 2021, 31(3): 201-205.
[17] 丁冰, 杨祖莨, 丁洁, 等. 基于改进YOLOv3的高速公路隧 道内停车检测方法[J]. 计算机工程与应用, 2021, 57(23): 234-239.
DING B, YANG Z L, DING J, et al. Improved YOLOv3-based parking detection method in highway tunnels[J]. Computer Engineering and Applications, 2021, 57(23): 234 -239.
[18] 葛雯, 姜添元. 改进YOLO与Deepsort检测跟踪算法的研 究[J]. 计算机仿真, 2022, 39(5): 186-190.
GE W, JIANG T Y. Research on improved YOLO and DeepSort detection and tracking algorithm[J]. Computer Simulation, 2022, 39(5): 186-190.
[19] 韩晓冰, 王雨田, 黄综浏, 等. 改进YOLOv5+DeepSort的行 人跟踪算法[J]. 现代电子技术, 2023, 46(7): 33-38.
HAN X B, WANG Y T, HUANG Z L, et al. Improved YOLOv5+DeepSort pedestrian tracking algorithm[J]. Modern Electronic Technology, 2023, 46(7): 33-38.
[20] 房凯. 基于深度学习的围栏跨越行为检测方法[J]. 计算机系统应用, 2021 , 30(2): 147-153.
FANG K. Deep learning-based detection method of fence crossing action[J]. Computer Systems & Applications, 2021, 30(2): 147-153.
[21] 丁俊峰, 肖文韬, 李明远, 等. 融合视觉感知与RTK定位的 变电站越界违章检测[J]. 计算机技术与发展, 2023, 33(8): 206-213.
DING J F, XIAO W T, LI M Y, et al. Research on out-of-bounds detection integrating visual perception and RTK positioning in substations[J]. Computer Technology and Development, 2023, 33(8): 206-213.
[22] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to- end object detection[J]. arXiv:2405.14458, 2024.
[23] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[24] YANG G Y, LEI J Z, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the 2023 IEEE Conference on Systems, Man, and Cybernetics, 2023: 2184-2189.
[25] WANG X L, XIAO T T, JIANG Y N, et al. Repulsion loss: detecting pedestrians in a crowd[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7774-7783.
[26] WIBOWO A T, HARIADI M, SULISTYNON T M Y, et al. Mapping of tourism destinations by GIS-blockchain RPCA based on PNPOLY algorithm[C]//Proceedings of the 2020 International Seminar on Application for Technology of Information and Communication, 2020: 412-416.
[27] ZHAO Y L, LI Y L, WANG S J, et al. Asymmetric deep hashing for person re-identifications[J]. Tsinghua Science and Techology, 2022, 27(2): 396-411. |