[1] 秦严严. 交通流分析理论[M]. 北京: 人民交通出版社, 2023: 192-194.
QIN Y Y. Theory of traffic flow analysis[M]. Beijing: China Communications Press, 2023: 192-194.
[2] ZHENG Y, LI S E, LI K Q, et al. Stability margin improvement of vehicular platoon considering undirected topology and asymmetric control[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1253-1265.
[3] GHASEMI A, KAZEMI R, AZADI S. Stable decentralized control of a platoon of vehicles with heterogeneous information feedback[J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4299-4308.
[4] GAO F, DANG D F, HUANG S S, et al. Decoupled robust control of vehicular platoon with identical controller and rigid information flow[J]. International Journal of Automotive Technology, 2017, 18(1): 157-164.
[5] FENG S, ZHANG Y, LI S E, et al. String stability for vehicular platoon control: definitions and analysis methods[J]. Annual Reviews in Control, 2019, 47: 81-97.
[6] 闫茂德, 宋家成, 杨盼盼, 等. 基于信息一致性的自主车辆变车距队列控制[J]. 控制与决策, 2017, 32(12): 2296-2300.
YAN M D, SONG J C, YANG P P, et al. Consensus based platoon for autonomous vehicles with time varying intervehicle distance[J]. Control and Decision, 2017, 32(12): 2296-2300.
[7] LI Y F, TANG C C, LI K Z, et al. Nonlinear finite-time consensus-based connected vehicle platoon control under fixed and switching communication topologies[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 525-543.
[8] ZHANG D, SHEN Y P, ZHOU S Q, et al. Distributed secure platoon control of connected vehicles subject to DoS attack: theory and application[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(11): 7269-7278.
[9] 李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856.
LI Y F, HE C P, ZHU H, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856.
[10] HU M J, LI C K, BIAN Y G, et al. Fuel economy-oriented vehicle platoon control using economic model predictive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 20836-20849.
[11] 刘润坤, 于海洋, 程猛越, 等. 间歇性通信失效下网联自动驾驶队列控制策略[J]. 交通运输系统工程与信息, 2023, 23(2): 54-66.
LIU R K, YU H Y, CHENG M Y, et al. Platoon control strategy for connected and automated vehicles under intermittent communication failures[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 54-66.
[12] HOU K N, ZHENG F F, LIU X B, et al. Cooperative vehicle platoon control considering longitudinal and lane-changing dynamics[J]. Transportmetrica A: Transport Science, 2024, 20(3): 1-29.
[13] DU W J. Stability analysis and control of a car-following model in a connected and autonomous environment[J]. International Journal of Innovative Computing Information and Control, 2023, 19(3): 671-686.
[14] LI Z R, LU G Y, LIU X B, et al. Heuristic platoon control method for CAVs at urban intersections[J]. Journal of Transportation Engineering, Part A: Systems, 2024, 150(3): 04023145.
[15] 李春, 吴志周, 曾广, 等. 合流区智能网联汽车协同控制方法综述[J]. 计算机工程与应用, 2024, 60(12): 1-17.
LI C, WU Z Z, ZENG G, et al. Review of connected autonomous vehicle cooperative control at on-ramp merging areas[J]. Computer Engineering and Applications, 2024, 60(12): 1-17.
[16] HUANG M Z, GAO W N, JIANG Z P. Connected cruise control for a platoon of human-operated and autonomous vehicles using adaptive dynamic programming[C]//Proceedings of the 2017 36th Chinese Control Conference. Piscataway: IEEE, 2017: 9478-9483.
[17] GONG S Y, DU L L. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles[J]. Transportation Research Part B: Methodological, 2018, 116: 25-61.
[18] ZHOU Y, AHN S, WANG M, et al. Stabilizing mixed vehicular platoons with connected automated vehicles: an H?infinity approach[J]. Transportation Research Part B: Methodological, 2020, 132: 152-170.
[19] FENG S, SONG Z Y, LI Z J, et al. Robust platoon control in mixed traffic flow based on tube model predictive control[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(4): 711-722.
[20] CHEN J Z, LIANG H, LI J, et al. A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 573: 125939.
[21] LAN J L, ZHAO D Z, TIAN D X. Safe and robust data-driven cooperative control policy for mixed vehicle platoons[J]. International Journal of Robust and Nonlinear Control, 2023, 33(7): 4171-4190.
[22] ZHAO H, SUN D H, JIN S, et al. Consensus-based control strategy for mixed platoon under delayed V2X environment[J]. Journal of Transportation Engineering, Part A: Systems, 2023, 149(5): 04023029.
[23] ZHANG L J, OROSZ G. Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1638-1651.
[24] LI F J, WANG Y. Cooperative adaptive cruise control for string stable mixed traffic: benchmark and human-centered design[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3473-3485.
[25] CHEHARDOLI H, GHASEMI A. Formation control of longitudinal vehicular platoons under generic network topology with heterogeneous time delays[J]. Journal of Vibration and Control, 2019, 25(3): 655-665.
[26] ZHENG Y, WANG J W, LI K Q. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 7(5): 3882-3896.
[27] JIN S, SUN D H, ZHAO M, et al. Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 551: 124217.
[28] 李淑庆, 李啟丰, 王昊, 等. 协作式巡航控制下混合车队队列稳定性[J]. 交通运输系统工程与信息, 2021, 21(4): 82-89.
LI S Q, LI Q F, WANG H, et al. String stability of mixed platoon under cooperative adaptive cruise control[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 82-89.
[29] 胡满江, 卜令坤, 秦洪懋, 等. 多类时延下混合车辆队列建模与协同控制[J]. 汽车工程, 2022, 44(9): 1359-1371.
HU M J, BU L K, QIN H M, et al. Modeling and cooperative control of mixed vehicle platoon under multi-time delay[J]. Automotive Engineering, 2022, 44(9): 1359-1371.
[30] 边有钢, 杨依琳, 胡满江, 等. 基于双向多车跟随式拓扑的混合车辆队列稳定性研究[J]. 中国公路学报, 2022, 35(3): 66-77.
BIAN Y G, YANG Y L, HU M J, et al. Study on the stability of mixed vehicular platoon based on bidirectional multiple-vehicle following topologies[J]. China Journal of Highway and Transport, 2022, 35(3): 66-77.
[31] HELLY W. Simulation of bottlenecks in single lane traffic flow[C]//Proceedings of the Symposium on Theory of Traffic Flow, Amsterdam, 1959. Amsterdam, Netherlands: Elsevier, 1959: 207-238.
[32] MILANéS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
[33] MAHAL S. Effects of communication delays on string stability in an AHS environment[D]. Berkeley: University of California at Berkeley, 2000.
[34] SAIFUZZAMAN M, ZHENG Z D. Incorporating human-factors in car-following models: a review of recent developments and research needs[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 379-403.
[35] SHARMA A, ALI Y, SAIFUZZAMAN M, et al. Human factors in modelling mixed traffic of traditional, connected, and automated vehicles[C]//Proceedings of 8th International Conference on Applied Human Factors and Ergonomics. Cham: Springer International Publishing, 2017: 262-273.
[36] MOON Y S, PARK P, KWON W H, et al. Delay-dependent robust stabilization of uncertain state-delayed systems[J]. International Journal of Control, 2001, 74(14): 1447-1455.
[37] SHLADOVER S E, SU D Y, LU X Y. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record Journal of the Transportation Research Board , 2012, 2324(1): 63-70. |