[1] 陈原华, 周冬. 早期乳腺癌的危险因素及防控措施分析[J]. 中国肿瘤临床与康复, 2022, 29(9): 1070-1072.
CHEN Y H, ZHOU D. Risk factors and prevention and control measures for early stage breast cancer[J]. Chinese Journal of Clinical Oncology and Rehabilitation, 2022, 29(9): 1070-1072.
[2] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[3] CARLOS A P, MOSHE S. A fuzzy-genetic approach to breast cancer diagnosis[J]. Artificial Intelligence in Medicine, 1999, 17(2): 131-155.
[4] TRYGGVADOTTIR L, TULINIUS H, EYFJORD J E, et al. Breastfeeding and reduced risk of breast cancer in an Icelandic cohort study[J]. American Journal of Epidemiology, 2001, 154(1): 37-42.
[5] JERNSTROM H, LUNINSKI J, LYNCH H T, et al. Breast-feeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers[J]. Journal of the National Cancer Institute, 2004, 96(14): 1094-1098.
[6] GAIL M H, BRTINTON L A, BYAR D P, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually[J]. Journal of the National Cancer Institute, 1989, 81(24): 1879-1886.
[7] KEMAL A. Diagnosis of breast cancer with stacked autoencoder and subspace kNN[J]. Physica A: Statistical Mechanics and its Applications, 2020, 551(4): 124591.
[8] 苗立志, 刁继尧, 娄冲, 等. 基于Spark和随机森林的乳腺癌风险预测分析[J]. 计算机技术与发展, 2019, 29(8): 142-146.
MIAO L Z, DIAO J Y, LOU C, et al. Breast cancer risk prediction analysis based on apache spark and random forest algorithm[J]. Computer Technology and Development, 2019, 29(8): 142-146.
[9] ALFIAN G, SYAFRUDIN M, FAHRURROZ I, et al. Predicting breast cancer from risk factors using SVM and extra-trees-based feature selection method[J]. Computers, 2022, 11(9): 136.
[10] 李勇, 陈思萱, 贾海, 等. 基于C-AdaBoost模型的乳腺癌预测研究[J]. 计算机工程与科学, 2020, 42(8): 1414-1422.
LI Y, CHEN S X, JIA H, et al. Prediction of breast cancer based on C-AdaBoost model[J]. Computer Engineering & Science, 2020, 42(8): 1414-1422.
[11] 袁梦绚. 基于深度学习的乳腺癌预测[J]. 计算机与数字工程, 2021, 49(11): 2353-2357.
YUAN M X. Breast cancer prediction based on deep learning[J]. Computer & Digital Engineering, 2021, 49(11): 2353-2357.
[12] ABDIKENOV B, IKLASSOV Z, SHARIPOV A, et al. Analytics of heterogeneous breast cancer data using neuroevolution[J]. IEEE Access, 2019, 7: 18050-18060.
[13] 沈倩倩, 邵峰晶, 孙仁诚. 基于XGBoost的乳腺癌预测模型[J]. 青岛大学学报 (自然科学版), 2019, 32(1): 95-100.
SHEN Q Q, SHAO F J, SUN R C. Prediction model of breast cancer based on XGBoost[J]. Journal of Qingdao University (Natural Science Edition), 2019, 32(1): 95-100.
[14] 甘富文, 武明辉, 吴亚平, 等. 多特征融合的肝细胞癌分化等级术前预测方法研究[J]. 计算机应用与软件, 2022, 39(7): 147-153.
GAN F W, WU M H, WU Y P, et al. A preoperative prediction method for differentiation grades of hepatocellular carcinoma based on multi-feature fusion[J]. Computer Applications and Software, 2022, 39(7): 147-153.
[15] 王鑫, 廖彬, 李敏, 等. 融合LightGBM与SHAP的糖尿病预测及其特征分析方法[J]. 小型微型计算机系统, 2022, 43(9): 1877-1885.
WANG X, LIAO B, LI M, et al. Combination of LightGBM and SHAP for diabetes prediction and feature analysis[J]. Journal of Chinese Computer Systems, 2022, 43(9): 1877-1885.
[16] ZHANG S, YUAN Y, YAO Z, et al. Coronary artery disease detection model based on class balancing methods and LightGBM algorithm[J]. Electronics, 2022, 11(9): 1495.
[17] ZHANG C, LEI X, LIU L. Predicting metabolite-disease associations based on LightGBM model[J]. Frontiers in Genetics, 2021, 12: 660275.
[18] LIAO H, ZHANG X, ZHAO C, et al. LightGBM: an efficient and accurate method for predicting pregnancy diseases[J]. Journal of Obstetrics and Gynaecology, 2021, 42(4): 620-629.
[19] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//Proceedings of the International Conference on Advances in Intelligent Computing, 2005: 878-887.
[20] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[21] 柴岩, 孙笑笑, 任生. 融合多向学习的混沌麻雀搜索算法[J]. 计算机工程与应用, 2023, 59(6): 81-91.
CHAI Y, SUN X X, REN S. Chaotic sparrow search algorithm based on multi-directional learning[J]. Computer Engineering and Applications, 2023, 59(6): 81-91.
[22] ZHANG C L, DING S F. A stochastic configuration network based on chaotic sparrow search algorithm[J]. Knowledge-Based Systems, 2021, 220: 106924.
[23] 高晨峰, 陈家清, 石默涵. 融合黄金正弦和曲线自适应的多策略麻雀搜索算法[J]. 计算机应用研究, 2022, 39(2): 491-499.
GAO C F, CHEN J Q, SHI M H. Multi-strategy sparrow search algorithm integrating golden sine and curve adaptive[J]. Application Research of Computers, 2022, 39(2): 491-499.
[24] 楚哲宇, 唐秀英, 谭庆, 等. 基于逐维高斯变异的混沌麻雀优化算法[J]. 自动化应用, 2021(8): 60-63.
CHU Z Y, TANG X Y, TAN Q, et al. Chaos sparrow optimization algorithm based on dimensional Gaussian mutation[J]. Automation Application, 2021(8): 60-63.
[25] 张伟康, 刘升, 任春慧. 混合策略改进的麻雀搜索算法[J]. 计算机工程与应用, 2021, 57(24): 74-82.
ZHANG W K, LIU S, REN C H. Mixed strategy improved sparrow search algorithm[J]. Computer Engineering and Applications, 2021, 57(24): 74-82.
[26] BARANOVSKY A, DAEMS D. Design of one-dimensional chaotic maps with prescribed statistical properties[J]. International Journal of Bifurcation and Chaos, 1995, 5(6): 1585-1598.
[27] 段玉先, 刘昌云. 基于Sobol序列和纵横交叉策略的麻雀搜索算法[J]. 计算机应用, 2022, 42(1): 36-43.
DUAN Y X, LIU C Y. Sparrow search algorithm based on sobol sequence and crisscross strategy[J]. Journal of Computer Applications, 2022, 42(1): 36-43.
[28] MENG A B, CHEN Y C, YIN H, et al. Crisscross optimization algorithm and its application[J]. Knowledge-Based Systems, 2014, 67: 218-229.
[29] 王静莹. 服务互联网价值建模与优化分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
WANG J Y. Value modeling and value optimization analysis method for the internet of services[D]. Harbin: Harbin Institute of Technology, 2021.
[30] DNIEL J, RAJA G. Improving DNN robustness to adversarial attacks using Jacobian regularization[J]. arXiv:1803. 08680, 2018.
[31] Breast cancer wisconsin (diagnostic) data set[EB/OL]. http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29. |