[1] MEYER H, KüHNLEIN M, APPELHANS T, et al. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals[J].Atmospheric Research, 2016, 169: 424-433.
[2] ABAYOMI-ALLI O, MISRA S, ABAYOMI-ALLI A, et al. A review of soft techniques for SMS spam classification: methods, approaches and applications[J].Engineering Applications of Artificial Intelligence, 2019, 86: 197-212.
[3] KAYMAK S, HELWAN A, UZUN D. Breast cancer image classification using artificial neural networks[J].Procedia Computer Science, 2017, 120: 126-131.
[4] VLAHOU A, SCHORGEW J O, GREGORY B W, et al. Diagnosis of ovarian cancer using decision tree classification of mass spectral data[J].Journal of Biomedicine and Biotechnology, 2003(5): 308-314.
[5] VIAENE S, DERRIG R A, DEDENE G. Cost-sensitive learning and decision making for Massachusetts PIP claim fraud data[J].International Journal of Intelligent Systems, 2004, 19(12): 1197-1215.
[6] SAADALLAH A, BüSCHER J, ABDULAATY O, et al. Explainable predictive quality inspection using deep learning in electronics manufacturing[J].Procedia CIRP, 2022, 107: 594-599.
[7] SUN J, FJITA H, CHEN P, et al. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble[J]. Knowledge-Based Systems, 2017, 120: 4-14.
[8] HAN Y T, SUN Q, YU Z X. Research on financial early warning of listed companies based on Lasso-logistic model[C]//Proceedings of the Third International Conference on Economic and Business Management (FEBM), 2018: 263-267.
[9] HUANG C L, CHEN M C, WANG C J. Credit scoring with a data mining approach based on support vector machines[J].Expert Systems with Applications, 2007, 33(4): 847-856.
[10] 谢琪, 程耕国, 徐旭.基于神经网络集成学习股票预测模型的研究[J].计算机工程与应用, 2019, 55(8): 238-243.
XIE Q, CHENG G G, XU X. Research based on stock predicting model of neural networks ensemble learning[J].Computer Engineering and Applications, 2019, 55(8): 238-243.
[11] BASAK S, KAR S, SAHA S, et al. Predicting the direction of stock market prices using tree-based classifiers[J].The North American Journal of Economics and Finance, 2019, 47: 552-567.
[12] CHENG Z W, CHEN C S, QIU X H, et al. An improved KNN classification algorithm based on sampling[C]//Proceeding of the Advances in Materials, Machinery, Electrical Engineering (AMMEE), 2017: 220-225.
[13] CHEN R, ZHANG C X, GUO J, et al. Application of Naive Bayesian algorithms in E-mail classification[C]//Chinese Automation Congress (CAC), 2019: 3933-3938.
[14] KHAIDEM L, SAHA S, DEY S R. Predicting the direction of stock market prices using random forest[J].arXiv:1605. 00003, 2016.
[15] SUN Y T, ZHAO H Q. Stock selection model based on advanced AdaBoost algorithm[C]//Proceedings of the Seventh International Conference on Modelling, Identification and Control (ICMIC), 2015: 290-296.
[16] 罗泽南.基于集成树模型的Stacking量化选股策略研究[J].中国物价, 2021(2): 81-84.
LUO Z N. Research on quantitative stock selection strategy based on Stacking ensemble tree model[J].China Price, 2021(2): 81-84.
[17] LAN J, HU M Y, PATUWO E, et al. An investigation of neural network classifiers with unequal misclassification costs and group sizes[J]. Decision Support Systems, 2010, 48(4): 582-591.
[18] ELKAN C. The foundations of cost-sensitive learning[C]// Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001: 973-978.
[19] 王超发, 孙静春.考虑错分代价的LogitBoost算法及其在手机用户价值分类中的应用[J].系统工程理论与实践, 2019, 39(10): 2702-2712.
WANG C F, SUN J C. LogitBoost algorithm considering the cost of misclassification and its application in the classification of mobile user value[J].Systems Engineering-Theory & Practice, 2019, 39(10): 2702-2712.
[20] ZHOU Z H, LIU X Y. On multi‐class cost‐sensitive learning[J]. Computational Intelligence, 2010, 26(3): 232-257.
[21] 任婷婷, 鲁统宇, 崔俊.基于改进AdaBoost算法的动态不平衡财务预警模型[J].数量经济技术经济研究, 2021, 38(11): 182-197.
REN T T, LU T Y, CUI J. Dynamic imbalanced financial distress prediction model based on improved AdaBoost algorithm [J].Journal of Quantitative & Technological Economics, 2021, 38(11): 182-197.
[22] ZADROZNY B, LANGFORD J, ABE A. Cost-sensitive learning by cost-proportionate example weighting[C]//Third IEEE International Conference on Data Mining, 2003: 435-442.
[23] TING K M. An instance-weighting method to induce cost-sensitive trees[J].IEEE Transactions on Knowledge and Data Engineering, 2002, 14(3): 659-665.
[24] DOMINGOS P. MetaCost: a general method for making classifiers cost-sensitive[C]//Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, 1999: 155-164.
[25] 凌晓峰, SHENG Victor S. 代价敏感分类器的比较研究 (英文)[J].计算机学报, 2007, 30(8): 1203-1211.
LING C X, SHENG V S. A comparative study of cost-sensitive classifiers[J].Chinese Journal of Computers, 2007, 30(8): 1203-1211.
[26] VADERA S. CSNL: a cost-sensitive non-linear decision tree algorithm[J].ACM Transactions on Knowledge Discovery from Data, 2010, 4(2): 1-35.
[27] SAHIN Y, BULKAN S, DUMAN E. A cost-sensitive decision tree approach for fraud detection[J].Expert Systems with Applications, 2013, 40(15): 5916-5923.
[28] QIN Z X, WANG A T, ZHANG C Q, et al. Cost-sensitive classification with k-nearest neighbors[C]//International Conference on Knowledge Science, Engineering and Management, 2013: 112-131.
[29] BAHNSEN A C, AOUADA D, OTTERSTEN B. Example-dependent cost-sensitive logistic regression for credit scoring[C]//Proceedings of the Thirteenth International Conference on Machine Learning and Applications (ICMLA), 2014: 263-269.
[30] LIN Y, LEE Y, WAHBA G. Support vector machines for classification in nonstandard situations[J].Machine Learning, 2002, 46: 191-202.
[31] IRANMEHR A, MASNADI-SHIRAZI H, VASCONCELOS N. Cost-sensitive support vector machines[J].Neurocomputing, 2019, 343: 50-64.
[32] MASNADI-SHIRAZI H, VASCONCELOS N. Cost-sensitive boosting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 294-309.
[33] FAN W, STOLFO S J, ZHANG J X, et al. AdaCost: misclassification cost-sensitive Boosting[C]//Proceedings of the Sixteenth International Conference on Machine Learning, 1999: 97-105.
[34] VARIAN H B. A Bayesian approach to real estate assessment[M]//Studies in Bayesian econometric and statistics in honor of Leonard J. savage.[S.l.]:North-Holland Public Co., 1975: 195-208.
[35] MA Y, ZHAO K, WANG Q, et al. Incremental cost-sensitive support vector machine with Linear-Exponential loss[J].IEEE Access, 2020, 8: 149899-149914.
[36] FU S J, YU X Y, TIAN Y J. Cost sensitive v-support vector machine with LINEX loss[J].Information Processing and Management, 2022, 59(2).
[37] FU Y, CAO S A, PANG T. A sustainable quantitative stock selection strategy based on dynamic factor adjustment[J]. Sustainability, 2020, 12(10).
[38] 王晓丹, 孙东延, 郑春颖, 等.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版), 2006(6): 54-57.
WANG X D, SUN D Y, ZHENG C Y, et al. A combined SVM classifier based on AdaBoost[J].Journal of Air Force Engineering University, 2006(6): 54-57.
[39] 李斌, 邵新月, 李玥阳.机器学习驱动的基本面量化投资研究[J].中国工业经济, 2019(8): 61-79.
LI B, SHAO X Y, LI Y Y. Research on machine learning driven quantamental investing[J].China Industrial Economics, 2019, 377(8): 61-79. |