[1] 牛通, 卿粼波, 许盛宇, 等. 基于深度学习的分层关联多行人跟踪[J]. 计算机工程与应用, 2021, 57(8): 96-102.
NIU T, QING L B, XU S Y, et al. Multiple target tracking using hierarchical data association based on deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 96-102.
[2] 邬开俊, 黄涛, 王迪聪, 等. 视频异常检测技术研究进展[J]. 计算机科学与探索, 2022, 16(3): 529-540.
WU K J, HUANG T, WANG D C, et al. Research progress of video anomaly detection technology[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 529-540.
[3] 田建东, 刘连庆. 复杂气象条件下的机器人视觉[J]. 模式识别与人工智能, 2019, 32(1): 24-35.
TIAN J D, LIU L Q. Robot vision under complex weather conditions[J]. Pattern Recognition and Artificial Intelligence, 2019, 32 (1): 24-35.
[4] 姜文涛, 刘万军, 袁姮. 基于软特征理论的目标跟踪研究[J]. 计算机学报, 2016, 39(7): 1334-1355.
JIANG W T, LIU W J, YUAN H. Research of object tracking based on soft feature theory[J]. Chinese Journal of Computers, 2016, 39(7): 1334-1355.
[5] 栗俊杰, 毛鹏军, 淡文慧, 等. 基于YOLOv2-Tiny的无人机火灾检测与云台跟踪研究[J]. 消防科学与技术, 2022, 41(1): 108-112.
LI J J, MAO P J, DAN W H, et al. Research on UAV fire detection and PTZ tracking based on YOLOv2-Tiny[J]. Fire Science and Technology, 2022, 41(1): 108-112.
[6] 常诗颖, 胡燕. 多模态特征融合的视频记忆度预测[J]. 计算机工程与应用, 2022, 58(14): 219-226.
CHANG S Y, HU Y. Video memorability prediction based on multi-modal features fusion[J]. Computer Engineering and Applications, 2022, 58(14): 219-226.
[7] 董文轩, 梁宏涛, 刘国柱, 等. 深度卷积应用于目标检测算法综述[J]. 计算机科学与探索, 2022, 16(5): 1025-1042.
DONG W X, LIANG H T, LIU G Z, et al. Review of deep convolution applied to target detection algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042.
[8] BOLME D S, BEVERIDGE J R, DRAPER B A. Visual object tracking using adaptive correlation filters[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544-2550.
[9] HENRIQUES J F, CASEIRO R, MARITINS P. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012: 702-715.
[10] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[11] OVERETT G, PETERSSON L. Large scale sign detection using HOG feature variants[C]//Intelligent Vehicles Symposium (IV). New York, USA: IEEE, 2011: 326-331.
[12] DANELLJAN M, H?GER G, KHAN F M et al. Learning spatially regularized correlation filters for visual tracking[C]//IEEE International Conference on Computer Vision, Santiago, USA, 2015: 4310-4318.
[13] GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proceeding of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1144-1152.
[14] DAI K, WANG D, LU H, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4665-4674.
[15] LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 4904-4913.
[16] LI Y M, FU C H, DING F Q, et al. AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11920-11929.
[17] STEVENS S S. To honor fechner and repeal his law: a power function, not a log function, describesthe operating characteristic of a sensory system[J]. Science, 1961, 133(3446):80-86.
[18] BORJA P, JONATHAN E, NEAL P, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-126.
[19] VERMA R U. Generalized Eckstein-Bertsekas proximal point algorithm involving (H, η)-monotonicity framework[J]. Mathematical & Computer Modelling, 2007, 45(9/10): 1214-1230.
[20] TRAVER V J, BERNARDINO A. A review of log-polar imaging for visual perception in robotics[J]. Robotics & Autonomous Systems, 2010, 58(4): 378-398.
[21] 马珺, 王昱皓. 结合自适应更新策略和再检测技术的跟踪算法[J]. 计算机工程与应用, 2021, 57(9): 217-224.
MA J, WANG Y H. Object tracking algorithm based on adaptive update strategy and redetection technology[J]. Computer Engineering and Applications, 2021, 57(9): 217-224.
[22] HUA G H J. Fully-convolutional siamese networks for object tracking[J]. Computer Science, 2016, 10(1) 850-865.
[23] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015: 597-606.
[24] BO L, YAN J, WEI W, et al. High performance visual tracking with siamese region proposal network[C]//Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971-8980.
[25] XU Y, WANG Z, LI Z, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12549-12556.
[26] GUO D Y. Graph attention tracking[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9538-9547.
[27] FENG Q, ABLAVSKY V, BAI Q, et al. Tracking by natural language descriptions with siamese trackers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 5847-5856. |