[1] WANG H, REN H, LESKOVEC J. Relational message passing for knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2021: 1697-1707.
[2] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, 2013.
[3] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.
[4] KAOUDI Z, LORENZO A C M, MARKL V. Towards loosely-coupling knowledge graph embeddings and ontology-based reasoning[J]. arXiv:2202.03173, 2022.
[5] LU X, WANG L, JIANG Z, et al. MRE: a translational knowledge graph completion model based on multiple relation embedding[J]. Mathematical Biosciences and Engineering, 2023, 20: 5881-5900.
[6] WANG Q, MAO Z, WANG B, et al. GCN-Align: graph convolutional networks for aligning multi-relational knowledge graphs[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 3974-3984.
[7] SUN Z, DENG H, NIE Y, et al. Bootstrapping embeddings of knowledge graphs with entity descriptions for link prediction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 338-348.
[8] WANG Z, LV Q, LAN X, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 349-357.
[9] CHEN M, TIAN Y, YANG M, et al. MEDAL: multi-task embedded deep attributed learning for cross-lingual knowledge graph alignment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 2110-2120.
[10] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1126-1135.
[11] NICHOL A, ACHIAM J, SCHULMAN J, et al. On first-order meta-learning algorithms[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 2535-2544.
[12] CHEN M, ZHANG W, ZHANG W, et al. Meta relational learning for few-shot link prediction in knowledge graphs[J]. arXiv:1909.01515, 2019.
[13] 王子涵, 邵明光, 刘国军, 等. 基于实体相似度信息的知识图谱补全算法[J]. 计算机应用, 2018, 38(11): 3089-3093.
WANG Z H, SHAO M G, LIU G J, et al. Knowledge graph completion algorithm based on similarity between entities[J]. Journal of Computer Applications, 2018, 38(11): 3089-3093.
[14] ZHANG Y, LIANG H, JATOWT A, et al. GMH: a general multi-hop reasoning model for KG completion[J]. arXiv:2010.
07620, 2020.
[15] JI G, LIU K, HE S, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016.
[16] AN Q, YU L. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions[J]. Briefings in Bioinformatics, 2021, 22(6): bbab275.
[17] WANG Z H, LAI K, LI P J, et al. Tackling long-tailed relations and uncommon entities in knowledge graph completion[J]. arXiv:1909.11359, 2019.
[18] 张宁豫, 谢辛, 陈想, 等. 基于知识协同微调的低资源知识图谱补全方法[J]. 软件学报, 2022, 33(10): 3531-3545.
ZHANG N Y, XIE X, CHEN X, et al. Knowledge collaborative fine-tuning for low-resource knowledge graph completion[J]. Journal of Software, 2022, 33(10): 3531-3545.
[19] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 2071-2080.
[20] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014.
[21] SUN Z, DENG Z H, NIE J Y, et al. Rotate: knowledge graph embedding by relational rotation in complex space[J]. arXiv:1902.10197, 2019.
[22] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]//Advances in Neural Information Processing Systems 31, 2018.
[23] ZHANG S, TAY Y, YAO L, et al. Quaternion knowledge graph embeddings[C]//Advances in Neural Information Processing Systems 32, 2019.
[24] SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM: end-to-end differentiable rule mining on knowledge graphs[C]//Advances in Neural Information Processing Systems 32, 2019. |