[1] 王子琪, 陈金富, 张国芳, 等. 基于飞蛾扑火优化算法的电力系统最优潮流计算[J]. 电网技术, 2017, 41(11): 3641-3647.
WANG Z Q, CHEN J F, ZHANG G F, et al. Optimal power flow calculation with moth-flame optimization algorithm[J]. Power System Technology, 2017, 41(11): 3641-3647.
[2] KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of the International Conference on Neural Networks (ICNN’95), 1995: 1942-1948.
[3] STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[4] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.
[5] JIANKAI X, BO S. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2022, 79(7): 7305-7336.
[6] CHOWDHURY D, PRASAD DE B, DASMAHAPATRA S, et al. Optimisation of sub-threshold and saturation parameters of gate stack double gate (GSDG) MOSFET using moth-flame optimization algorithm[J]. Materials Today: Proceedings, 2023, 79: 308-315.
[7] LI C, LI S, LIU Y. A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting[J]. Applied Intelligence, 2016, 45(4): 1166-1178.
[8] YUSUBOV E, BEKIROVA L. A moth-flame optimized robust PID controller for a SEPIC in photovoltaic applications[J]. IFAC-PapersOnLine, 2022, 55(11): 120-125.
[9] ZHAO Huiru, ZHAO Haoran, GUO Sen. Using GM (1,1) optimized by MFO with rolling mechanism to forecast the electricity consumption of inner mongolia[J]. Applied Sciences, 2016, 6(1): 20.
[10] KASHYAP A K, PARHI D R, KUMAR P B. Route outlining of humanoid robot on flat surface using MFO aided artificial potential field approach[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(6/7): 758-769.
[11] SARAVANAN L, SOZHAMANNAN G S, VELMURUGAN K, et al. MFO-optimized constitutive model for a hybrid aluminum nanocomposite[J]. Materials Today: Proceedings, 2021, 44: 2366-72.
[12] 李志明, 莫愿斌. 基于Lévy飞行的飞蛾扑火优化算法[J]. 计算机工程与设计, 2017, 38(3): 807-813.
LI Z M, MO Y B. Moth-flame optimization algorithm based on Levy flights[J]. Computer Engineering and Design, 2017, 38(3): 807-813.
[13] MOHAMMED Q, SOUAD A, HUSSEIN N K, et al. Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators [J]. Computers and Electrical Engineering, 2023, 106:108603.
[14] CHEN C C, WANG X C, YU H L, et al. Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms[J]. Mathematics and Computers in Simulation, 2021, 188: 291-318.
[15] SAROJ K S, HOUSSEIN E H, PREMKUMAR M, et al. Self-adaptive moth flame optimizer combined with crossover operator and Fibonacci search strategy for COVID-19 CT image segmentation [J]. Expert Systems with Applications, 2023, 227: 120367.
[16] ZHAO X, FANG Y, LIU L, et al. Ameliorated moth-flame algorithm and its application for modeling of silicon content in liquid iron of blast furnace based fast learning network[J]. Applied Soft Computing Journal, 2020, 94: 106418.
[17] 李煜, 朱新亚, 刘景森. 求解高维复杂函数的改进飞蛾扑火算法[J]. 工业工程, 2023, 26(2): 101-110.
LI Y, ZHU X Y, LIU J S. An improved moth-flame optimization algorithm for solving high-dimensional complex functions[J]. Industrial Engineering Journal, 2023, 26(2): 101-110.
[18] 赵晓东. 飞蛾火焰优化算法的改进及其应用研究[D]. 秦皇岛: 燕山大学, 2022.
ZHAO X D. Research on improvement and application of moth-flame optimization algorithm[D]. Qinhuangdao: Yanshan University, 2022.
[19] HASSANIEN A E, GABER T, MOKHTAR U, et al. An improved moth flame optimization algorithm based on rough sets for tomato diseases detection[J]. Computers and Electronics in Agriculture, 2017, 136: 86-96.
[20] ANMAR A. Modified hybrid moth optimization algorithm for PFSS problem[J]. SN Computer Science, 2023, 4(3):298.
[21] 徐福强, 邹德旋, 李灿, 等. 引入Circle映射和正弦余弦因子的改进粒子群算法[J]. 计算机工程与应用, 2023, 59(17): 80-90.
XU F Q, ZOU D X, LI C. et al. Improved particle swarm optimization algorithm with Circle mapping and sine cosine factor[J]. Computer Engineering and Applications, 2023, 59(17): 80-90.
[22] 田鸿, 陈国彬, 刘超. 新型飞蛾火焰优化算法的研究[J]. 计算机工程与应用, 2019, 55(16): 138-143.
TIAN H, CHEN G B, LIU C. Research on new moth-flame optimization algorithm[J]. Computer Engineering and Applications, 2019, 55(16): 138-143.
[23] 刘倩, 冯艳红, 陈嶷瑛. 基于混沌初始化和高斯变异的飞蛾火焰优化算法[J]. 郑州大学学报 (工学版), 2021, 42(3): 53-58.
LIU Q, FENG Y H, CHEN Y Y. Moth flame optimization algorithm based on chaos initialization and Gaussian mutation[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(3): 53-58.
[24] ZHAO X D, FANG Y M, LIU L, et al. A covariance-based moth-flame optimization algorithm with Cauchy mutation for solving numerical optimization problems[J]. Applied Soft Computing Journal, 2022, 119:108538.
[25] ZHU F, LI G S, TANG H, et al. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems[J]. Expert Systems with Applications, 2024, 236:121219.
[26] SHEN Q, ZHANG D, XIE M, et al. Multi-strategy enhanced dung beetle optimizer and its application in three-dimensional UAV path planning [J]. Symmetry, 2023, 15(7):1432.
[27] 张新明, 王霞, 康强. 改进的灰狼优化算法及其高维函数和FCM优化[J]. 控制与决策, 2019, 34(10): 2073-2084.
ZHANG X M, WANG X, KANG Q. Improved grey wolf optimizer and its application to high-dimensional function and FCM optimization[J]. Control and Decision, 2019, 34(10): 2073-2084.
[28] 张阳, 周溪召. 求解全局优化问题的改进灰狼算法[J]. 上海理工大学学报, 2021, 43(1): 73-82.
ZHANG Y, ZHOU X Z. Modified grey wolf optimization algorithm for global optimization problems[J]. Journal of University of Shanghai for Science and Technology, 2021, 43(1): 73-82.
[29] 贾鹤鸣, 林建凯, 吴迪, 等. 融合学习行为策略的改进黑猩猩优化算法[J]. 计算机工程与应用, 2023, 59(16): 82-92.
JIA H M, LIN J K, WU D, et al. Modified chimp optimization algorithm based on learning behavior strategy[J]. Computer Engineering and Applications, 2023, 59(16): 82-92.
[30] HADI B, SIAMAK T, MEYSAM S, et al. Social network search for solving engineering optimization problems[J]. Computational Intelligence and Neuroscience, 2021: 8548639. |