[1] LIAO S, HU Y, ZHU X, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 2197-2206.
[2] ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: past, present and future[J]. arXiv:1610.02984, 2016.
[3] ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 1367-1376.
[4] SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 480-496.
[5] WANG G, YUAN Y, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 274-282.
[6] LUO H, JIANG W, ZHANG X, et al. AlignedreID++: dynamically matching local information for person re-identification[J]. Pattern Recognition, 2019, 94: 53-61.
[7] SUN Y, CHENG C, ZHANG Y, et al. Circle loss: a unified perspective of pair similarity optimization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 6398-6407.
[8] 杨永胜, 邓淼磊, 张德贤. 基于IBN-Net和通道注意力的行人重识别方法[J]. 计算机工程与应用, 2023, 59(17): 143-151.
YANG Y S, DENG M L, ZHANG D X. Person re-identification method based on IBN-Net and channel attention[J]. Computer Engineering and Application, 2023, 59(17): 143-151.
[9] 陈璠, 彭力. 异构分支关联特征融合的行人重识别[J]. 计算机科学与探索, 2022, 16(11): 2609-2618.
CHEN F, PENG L. Person re-identification based on heterogeneous branch correlative features fusion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2609-2618.
[10] 钱亚萍, 王凤随, 熊磊. 基于局部细化多分支与全局特征共享的无监督行人重识别方法[J]. 电子测量与仪器学报, 2023, 37(1): 106-115.
QIAN Y P, WANG F S, XIONG L. Unsupervised person re-identification method based on local refinement multi-branch and global feature sharing[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(1): 106-115.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017.
[12] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[13] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 10012-10022.
[14] HE S, LUO H, WANG P, et al. TransreID: transformer-based object re-identification[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, Montreal, 2021: 15013-15022.
[15] LEE K, JANG I S, KIM K J, et al. REET: region-enhanced transformer for person re-identification[C]//Proceedings of the 2022 IEEE International Conference on Advanced Video and Signal Based Surveillance, Madrid, 2022: 1-8.
[16] PENG Z, HUANG W, GU S, et al. Conformer: local features coupling global representations for visual recognition[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, Montreal, 2021: 367-376.
[17] LI H, YE M, WANG C, et al. Pyramidal transformer with Conv-Patchify for person re-identification[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 7317-7326.
[18] XIE C X, XIA C Q, MA M C, et al. Pyramid grafting network for one-stage high resolution saliency detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, 2022: 11717-11726.
[19] 王静, 李沛橦, 赵容锋, 等. 融合卷积注意力Transformer架构的行人重识别方法[J]. 北京航空航天大学学报, 2024, 50(2): 466-476.
WANG J, LI P T, ZHAO R F, et al. A person re-identification method for fusing convolutional attention and transformer architecture[J]. Journal of Beihang University, 2024, 50(2): 466-476.
[20] ZHANG G, ZHANG P, QI J, et al. HAT: hierarchical aggregation transformers for person re-identification[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 516-525.
[21] 刘洋, 闫冬梅, 孟范伟. 基于Transformer改进的两分支行人重识别算法[J]. 东北大学学报 (自然科学版), 2023, 44(1): 26-32.
LIU Y, YAN D M, MENG F W. Improved two-branch person re-identification algorithm based on transformer[J]. Journal of Northeastern University (Natural Science), 2023, 44(1): 26-32.
[22] ZHANG R. Making convolutional networks shift-invariant again[C]//Proceedings of the 2019 International Conference on Machine Learning, Los Angeles, 2019: 7324-7334.
[23] ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, 2015: 1116-1124.
[24] ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, 2017: 3754-3762.
[25] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2921-2929.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[27] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008: 1-8.
[28] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 13001-13008.
[29] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 1725-1732.
[30] HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
[31] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, 2017: 618-626.
[32] WU J, YANG Y, LEI Z, et al. Camera-aware representation learning for person re-identification[J]. Neurocomputing, 2023, 518: 155-164.
[33] CHEN T L, DING S J, XIE J Y, et al. ABD-net: attentive but diverse person re-identification[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, 2019: 8351-8361.
[34] ZHOU K Y, YANG Y X, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, 2019: 3702-3712.
[35] ZHU K, GUO H, LIU Z, et al. Identity-guided human semantic parsing for person re-identification[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 346-363.
[36] 王鹏, 宋晓宁, 吴小俊, 等. 用于行人重识别的多类型特征网络[J]. 模式识别与人工智能, 2020, 33(10): 879-888.
WANG P, SONG X N, WU X J, et al. Multi-type features network for person re-identification[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 879-888.
[37] YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(6): 2872-2893.
[38] ZHONG Z, ZHENG L, CAO D, et al. Re-ranking person re-identification with k?reciprocal encoding[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pttern Rcognition, Honolulu, 2017: 1318-1327.
[39] LI Y, HE J, ZHANG T, et al. Diverse part discovery: occluded person re-identification with part-aware transformer[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, 2021: 2898-2907.
[40] CHEN Y, XIA S, ZHAO J, et al. ResT-reID: transformer block-based residual learning for person re-identification[J]. Pattern Recognition Letters, 2022, 157: 90-96. |