计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (15): 55-65.DOI: 10.3778/j.issn.1002-8331.2402-0190
王浩宇,杨海涛,王晋宇,周玺璇,张宏钢,徐一帆
出版日期:
2024-08-01
发布日期:
2024-07-30
WANG Haoyu, YANG Haitao, WANG Jinyu, ZHOU Xixuan, ZHANG Honggang, XU Yifan
Online:
2024-08-01
Published:
2024-07-30
摘要: 成像环境的复杂性导致遥感图像中含有多种类型的噪声,通过对这些噪声的去除,可以有效提高后续工作的效率和精度。近年来,针对遥感图像的去噪方法逐渐成为图像处理领域中的研究热点。在吸收国内外众多学者研究工作的基础上,对可见光遥感图像、红外遥感图像和SAR图像的去噪方法进行了系统性总结。介绍了遥感图像中噪声的主要来源及表现形式;列举了可用于遥感图像去噪方法研究的开源数据集和公开数据平台;根据处理域的不同,阐述了传统遥感图像去噪方法的优势和局限性。对基于深度学习的前沿遥感图像去噪方法进行了重点介绍,总结了其主要创新和不足之处。最后,对遥感图像去噪任务所面临的难题和未来发展方向进行了分析与展望。
王浩宇, 杨海涛, 王晋宇, 周玺璇, 张宏钢, 徐一帆. 遥感图像去噪方法研究综述[J]. 计算机工程与应用, 2024, 60(15): 55-65.
WANG Haoyu, YANG Haitao, WANG Jinyu, ZHOU Xixuan, ZHANG Honggang, XU Yifan. Review of Image Denoising Methods for Remote Sensing[J]. Computer Engineering and Applications, 2024, 60(15): 55-65.
[1] FENG X, TIAN S, ABHADIOMHEN S E, et al. Edge-preserved low-rank representation via multi-level knowledge in-corporation for remote sensing image denoising[J]. Remote Sensing, 2023, 15(9): 2318. [2] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464. ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and Attention Gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464. [3] 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548. MA Y, KEZIERBIEKE G. Research review of image semantic segmentation method in high-resolution remote sensing image interpretation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. [4] CAO Y, WEI J, CHEN S, et al. Remote sensing image recovery and enhancement by joint blind denoising and dehazing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2963-2976. [5] LEI S, LU M, LIN J, et al. Remote sensing image denoising based on improved semi-soft threshold[J]. Signal, Image and Video Processing, 2021, 15: 73-81. [6] LIU Y, WAN B, SHI D, et al. Generative recorrupted-to-recorrupted: an unsupervised image denoising network for arbitrary noise distribution[J]. Remote Sensing, 2023, 15(2): 364. [7] RASTI B, CHANG Y, DALSASSO E, et al. Image restoration for remote sensing: overview and toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 10(2): 201-230. [8] JEBUR R S, DER C S, HAMMOOD D A, et al. Image denoising techniques: an overview[C]//AIP Conference Proceedings, 2023. [9] 桑柳. 基于深度学习的红外图像去噪算法研究[D]. 西安: 西安电子科技大学, 2021. SANG L. Research on infrared image denoising algorithm based on deep learning[D]. Xi’an: Xidian University, 2021. [10] WANG Z, WEI J, WANG Y, et al. Remote sensing image denoising algorithm based on improved Transformer network[C]//Proceedings of the 2024 International Conference on Optoelectronic Information and Optical Engineering (OIOE 2024), 2024: 169-176. [11] XIONG F, ZHOU J, ZHOU J, et al. Multitask sparse representation model inspired network for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15. [12] 季利鹏, 孙志远, 朱大奇. 基于U-Net网络结构的SAR图像去噪算法研究[J/OL]. 微电子学与计算机: 1-10[2024-04-09]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240205. 1006.002.html. JI L P, SUN Z Y, ZHU D Q. Research on SAR image denoising technology based on U-Net network structure[J/OL]. Microelectronics & Computer: 1-10[2024-04-09]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240205.1006.002.html. [13] 柳鑫. 红外图像去噪算法研究[D]. 西安: 西安电子科技大学, 2020. LIU X. Research on infrared image denoising algorithm[D]. Xi’an: Xidian University, 2020. [14] 徐辉. 基于低秩描述模型的高光谱图像去噪算法研究[D]. 南京: 南京邮电大学, 2023. XU H. Hyperspectral image denoising algorithm based on low rank description model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023. [15] SARA U, AKTER M, UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. [16] SETIADI D R I M. PSNR vs SSIM: imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications, 2021, 80(6): 8423-8444. [17] KELE? O, YΙLMAZ M A, TEKALP A M, et al. On the computation of PSNR for a set of images or video[C]//Proceedings of the 2021 Picture Coding Symposium (PCS), 2021: 1-5. [18] WU H, CHEN B, GUO Z, et al. Mini-infrared thermal imaging system image denoising with multi-head feature fusion and detail enhancement network[J]. Optics & Laser Technology, 2024, 179: 111311. [19] CHENG G, HAN J, ZHOU P, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132. [20] CHENG G, HAN J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28. [21] CHENG G, ZHOU P, HAN J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. [22] XIAO Z, LIU Q, TANG G, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644. [23] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983. [24] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. [25] LI J, QU C, SHAO J. Ship detection in SAR images based on an improved faster R-CNN[C]//2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), 2017: 1-6. [26] WEI S, ZENG X, QU Q, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254. [27] 赵炜东. 基于可见光与红外图像联合的目标与地物提取方法研究[D]. 北京: 军事科学院, 2023. ZHAO W D. Research of object and land cover extraction based on combination of visible and infrared remote sensing images[D]. Beijing: Academy of Military Sciences, 2023. [28] 黄硕. 基于学习的红外遥感超分辨率目标识别算法研究[D]. 北京: 中国科学院大学, 2020. HUANG S. Research on super-resolution recognition method of infrared target based on machine learning[D]. Beijing: University of Chinese Academy of Sciences, 2020. [29] LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-5811. [30] TANG L, YUAN J, ZHANG H, et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83: 79-92. [31] 任超, 张胜国, 李现广, 等. 一种新的遥感影像组合滤波去噪方法[J]. 桂林理工大学学报, 2023, 43(3): 442-449. REN C, ZHANG S G, LI X G, et al. A new combined filtering and denoising algorithm for remote sensing images[J]. Journal of Guilin University of Technology, 2023, 43(3): 442-449. [32] 邢笑笑, 李杰. 空域滤波图像去噪算法研究[J]. 电子技术与软件工程, 2022(16): 144-147. XING X X, LI J. Research on spatial domain filtering image denoising algorithm[J]. Electronic Technology & Software Engineering, 2022(16): 144-147. [33] PAN J, TANG Y, PAN B. The algorithm of fast mean filtering[C]//Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, 2007: 244-248. [34] ZHANG X, LIAO H, DU X, et al. A fast hybrid noise filtering algorithm based on median-mean[C]//Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018: 2120-2125. [35] JUSTUSSON B I. Median filtering: statistical properties[J]. Two-Dimensional Digital Signal Prcessing II: Transforms and Median Filters, 2006: 161-196. [36] ITO K. Gaussian filter for nonlinear filtering problems[C]//Proceedings of the IEEE Conference on Decision & Control, 2002: 1218-1223. [37] PARIS S, DURAND F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision, 2009, 81(1): 24-52. [38] MCCLELLAN J, PARKS T. Eigenvalue and eigenvector decomposition of the discrete Fourier transform[J]. IEEE Transactions on Audio and Electroacoustics, 1972(1): 66-74. [39] 陈振娅, 刘增力. 基于小波变换的水下图像去噪方法[J]. 现代电子技术, 2023, 46(23): 43-47. CHEN Z Y, LIU Z L. Underwater image denoising method based on wavelet transform[J]. Modern Electronics Technique, 2023, 46(23): 43-47. [40] NARASIMHA M, PETERSON A. On the computation of the discrete cosine transform[J]. IEEE Transactions on Communications, 1978, 26(6): 934-936. [41] DABOV K, FOI A, KATKOVNIK V, et. al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [42] GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 2862-2869. [43] 任超, 李现广, 邓开元, 等. 结合BM3D和多级非线性加权平均中值滤波的遥感影像混合噪声去噪方法[J]. 测绘通报, 2020(1): 89-93. REN C, LI X G, DENG K Y, et al. Mixed noise denoising method for remote sensing images combining BM3D and multi-level nonlinear weighted average median filtering[J]. Bulletin of Surveying and Mapping, 2020(1): 89-93. [44] CHEN J, LI H, CHEN T, et al. A denoising method of remote sensing images based on improved BM3D[C]//Proceedings of the 4th International Conference on Computer Science and Application Engineering, 2020: 1-6. [45] ZHAO H, ZHOU X, PENG C, et al. An integrated BM3D method for removing mixed noise in remote sensing image[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 925-932. [46] LIU X, LU X, MA L. An improved synthetic aperture radar image denoising method based on block-matching and 3D filtering[J]. The International Archives of the Photogram-metry, Remote Sensing and Spatial Information Sciences, 2020, 43: 319-323. [47] FAZEL M. Matrix rank minimization with applications[D]. Palo Alto: Leland Sanford Junior University, 2002. [48] 胡鹏程, 卢献健, 唐诗华, 等. WNNM参数模型及迭代判断机制优化的遥感影像去噪[J]. 遥感信息, 2023, 38(5): 140-148. HU P C, LU X J, TANG S H, et al. Remote sensing image denoising optimized by WNNM parametric model and iterative judgment mechanism[J]. Remote Sensing Information, 2023, 38(5): 140-148. [49] CHEN J, ZHU Z, HU H, et al. A novel adaptive group sparse representation model based on infrared image denoising for remote sensing application[J]. Applied Sciences, 2023, 13(9): 5749. [50] BO F, LU W, WANG G, et al. A blind SAR image despeckling method based on improved weighted nuclear norm minimization[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [51] DENIS L, DALSASSO E, TUPIN F. A review of deep-learning techniques for SAR image restoration[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, 2021: 411-414. [52] 冯旭斌. 基于深度学习的光学遥感图像去噪与超分辨率重建算法研究[D]. 北京: 中国科学院大学, 2021. FENG X B. Research on deep-learning based optical remote sensing image denoising and super-resolution reconstructing algorithm[D]. Beijing: University of Chinese Academy of Sciences, 2021. [53] HUANG Z, ZHU Z, WANG Z, et al. D3CNNs: dual denoiser driven convolutional neural networks for mixed noise removal in remotely sensed images[J]. Remote Sensing, 2023, 15(2): 443. [54] HAN L, ZHAO Y, LV H, et al. Remote sensing image denoising based on deep and shallow feature fusion and attention mechanism[J]. Remote Sensing, 2022, 14(5): 1243. [55] LIU M, JIANG W, LIU W, et al. Dynamic adaptive attention guided self-supervised single remote sensing image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11. [56] KUANG X, SUI X, LIU Y, et al. Single infrared image optical noise removal using a deep convolutional neural network[J]. IEEE Photonics Journal, 2017, 10(2): 1-15. [57] XU K, ZHAO Y, LI F, et al. Single infrared image stripe removal via deep multi-scale dense connection convolutional neural network[J]. Infrared Physics & Technology, 2022, 121: 104008. [58] MOHANAKRISHNAN P, SUTHENDRAN K, PRADEEP A, et al. Synthetic aperture radar image despeckling based on modified convolution neural network[J]. Applied Geomatics, 2022(1): 1-12. [59] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [60] FENG X, ZHANG W, SU X, et al. Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain[J]. Remote Sensing, 2021, 13(9): 1858. [61] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690. [62] KUANG X, SUI X, LIU Y, et al. Single infrared image enhancement using a deep convolutional neural network[J]. Neurocomputing, 2019, 332: 119-128. [63] YANG P, WU H, CHENG L, et al. Infrared image denoising via adversarial learning with multi-level feature attention network[J]. Infrared Physics & Technology, 2023, 128: 104527. [64] WANG P, ZHANG H, PATEL V M. Generative adversarial network-based restoration of speckled SAR images[C]//Proceedings of the 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017: 1-5. [65] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851. [66] BANDARA W G C, NAIR N G, PATEL V M. DDPM-CD: remote sensing change detection using denoising diffusion probabilistic models[J]. arXiv:2206.11892, 2022. [67] PERERA M V, NAIR N G, BANDARA W G C, et al. SAR despeckling using a denoising diffusion probabilistic model[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5. [68] ANTONIADIS A, OPPENHEIM G. Translation-invariant denoising[M]//Wavelets and statistics. New York, NY: Springer, 1995: 125-150. [69] HU X, XU Z, CHEN Z, et al. SAR despeckling via regional denoising diffusion probabilistic model[J]. arXiv:2401.03122, 2024. [70] LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162. [71] NASCIMENTO M G, FAWCETT R, PRISACARIU V A. DSConv: efficient convolution operator[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 5148-5157. [72] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5. [73] LI T, LI Z, ROCKWELL H, et al. Prototype memory and attention mechanisms for few shot image generation[C]//Proceedings of the 11th International Conference on Learning Representations, April 25-29, 2022. [74] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for Faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031. |
[1] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
[2] | 廉露, 田启川, 谭润, 张晓行. 基于神经网络的图像风格迁移研究进展[J]. 计算机工程与应用, 2024, 60(9): 30-47. |
[3] | 杨晨曦, 庄旭菲, 陈俊楠, 李衡. 基于深度学习的公交行驶轨迹预测研究综述[J]. 计算机工程与应用, 2024, 60(9): 65-78. |
[4] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
[5] | 刘牧云, 卞春江, 陈红珍. 基于特征解耦的少样本遥感飞机图像增广算法[J]. 计算机工程与应用, 2024, 60(9): 244-253. |
[6] | 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260. |
[7] | 邱云飞, 王宜帆. 双分支结构的多层级三维点云补全[J]. 计算机工程与应用, 2024, 60(9): 272-282. |
[8] | 叶彬, 朱兴帅, 姚康, 丁上上, 付威威. 面向桌面交互场景的双目深度测量方法[J]. 计算机工程与应用, 2024, 60(9): 283-291. |
[9] | 周定威, 扈静, 张良锐, 段飞亚. 面向目标检测的数据集标签遗漏的协同修正技术[J]. 计算机工程与应用, 2024, 60(8): 267-273. |
[10] | 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15. |
[11] | 孙石磊, 李明, 刘静, 马金刚, 陈天真. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30. |
[12] | 汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[13] | 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55. |
[14] | 常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12. |
[15] | 周钰童, 马志强, 许璧麒, 贾文超, 吕凯, 刘佳. 基于深度学习的对话情绪生成研究综述[J]. 计算机工程与应用, 2024, 60(7): 13-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||