[1] ADJABI I, OUAHABI A, BENZAOUI A, et al. Past, present, and future of face recognition: a review[J]. Electronics, 2020, 9(8): 1188.
[2] SUN Y, LIANG D, WANG X G, et al. DeepID3: face recognition with very deep neural networks[J]. arXiv:1502.00873, 2015.
[3] PARKHI O M, VEDALDI A, ZISSERMAN A. Deep face recognition[C]//Proceedings of the British Machine Vision Conference, 2015.
[4] WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the European Conference on Computer Vision, 2016: 499-515.
[5] DENG J K, GUO J, YANG J, et al. ArcFace: additive angular margin loss for deep face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(10): 5962-5979.
[6] LEE J, WANG Y, CHO S. Angular margin-mining softmax loss for face recognition[J]. IEEE Access, 2022, 10: 43071-43080.
[7] BOUTROS F, DAMER N, KIRCHBUCHNER F, et al. Elasticface: elastic margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1578-1587.
[8] ZHANG Y, HERDADE S, THADANI K, et al. Unifying margin-based softmax losses in face recognition[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 3548-3557.
[9] SANG M, CHEN J X, LI M Z, et al. InterFace: adjustable angular margin inter-class loss for deep face recognition[J]. arXiv:2210.02018, 2022.
[10] JIAO J C, LIU W L, MO Y K, et al. Dyn-arcFace: dynamic additive angular margin loss for deep face recognition[J]. Multimedia Tools and Applications, 2021, 80(17): 25741-25756.
[11] DALVI J, BAFNA S, BAGARIA D, et al. A survey on face recognition systems[J]. arXiv:2201.02991, 2022.
[12] BOUTROS F, DAMER N, FANG M L, et al. MixFaceNets: extremely efficient face recognition networks[C]//Proceedings of the IEEE International Joint Conference on Biometrics, 2021: 1-8.
[13] CHEN S, LIU Y, GAO X, et al. MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices[C]//Proceedings of the Chinese Conference on Biometric Recognition, 2018: 428-438.
[14] MARTINEZ-DIAZ Y, MENDEZ-VAZQUEZ H, NICOLAS-DIAZ M, et al. ShuffleFaceNet: a lightweight face architecture for efficient and highly-accurate face recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 2721-2728.
[15] MARTINEZ-DIAZ Y, NICOLAS-DIAZ M, MENDEZ-VAZQUEZ H, et al. Benchmarking lightweight face architectures on specific face recognition scenarios[J]. Artificial Intelligence Review, 2021, 54: 6201-6244.
[16] YAN M J, ZHAO M G, XU Z N, et al. VarGFaceNet: an efficient variable group convolutional neural network for lightweight face recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2020: 2647-2654.
[17] TAN M X, LE Q V. MixConv: mixed depthwise convolutional kernels[C]//Proceedings of the British Machine Vision Conference, 2019.
[18] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[19] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision, 2018: 122-138.
[20] CAI H, ZHU L G, HAN S. ProxylessNAS: direct neural architecture search on target task and hardware[C]//Proceedings of the International Conference on Learning Representations, 2019.
[21] ZHANG Q, LI J J, YAO M, et al. VarGNet: variable group convolutional neural network for efficient embedded computing[J]. arXiv:1907.05653, 2019.
[22] ZHANG P, ZHAO F, LIU P, et al. Efficient lightweight attention network for face recognition[J]. IEEE Access, 2022, 10: 31740-31750.
[23] ALANSARI M, HAY O A, JAVED S, et al. GhostFaceNets: lightweight face recognition model from cheap operations[J]. IEEE Access, 2023, 11: 35429-35446.
[24] DAI Y, SUN K, HUANG W, et al. Attention-based hierarchical pyramid feature fusion structure for efficient face recognition[J]. IET Image Processing, 2023, 17(8): 2399-2409.
[25] LI H Y, HU J S, YU J W, et al. UFaceNet: research on multi-task face recognition algorithm based on CNN[J]. Algorithms, 2021, 14(9): 268.
[26] BOUTROS F, SIEBKE P, KLEMT M, et al. PocketNet: extreme lightweight face recognition network using neural architecture search and multistep knowledge distillation[J]. IEEE Access, 2022, 10: 46823-46833.
[27] WANG X B. Teacher guided neural architecture search for face recognition[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2021: 2817-2825.
[28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
[29] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//Proceedings of the International Conference on Learning Representations, 2021.
[30] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[31] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[J]. arXiv:2110.02178, 2021.
[32] 杨鹤, 柏正尧. CoT-TransUNet: 轻量化的上下文Transformer医学图像分割网络[J]. 计算机工程与应用, 2023, 59(3): 218-225.
YANG H, BAI Z Y. CoT-TransUNet: lightweight context Transformer medical image segmentation network[J]. Computer Engineering and Applications, 2023, 59(3): 218-225.
[33] 项剑文, 陈泯融, 杨百冰. 结合Swin及多尺度特征融合的细粒度图像分类[J]. 计算机工程与应用, 2023, 59(20): 147-157.
XIANG J W, CHEN M R, YANG B B. Fine-grained image classification combining swin and multi-scale feature fusion[J]. Computer Engineering and Applications, 2023, 59(20): 147-157.
[34] 张朝阳, 张上, 王恒涛, 等. 多尺度下遥感小目标多头注意力检测[J]. 计算机工程与应用, 2023, 59(8): 227-238.
ZHANG C Y, ZHANG S, WANG H T, et al. Multi-head attention detection of small targets in remote sensing at multiple scales[J]. Computer Engineering and Applications, 2023, 59(8): 227-238.
[35] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[36] ZHANG K P, ZHANG Z P, LI Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[37] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[C]//Proceedings of the Workshop on Faces in “Real-Life” Images: Detection, Alignment, and Recognition, 2008.
[38] ZHENG T Y, DENG W H, HU J N. Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments[J]. arXiv:1708.08197, 2017.
[39] ZHENG T Y, DENG W H. Cross-pose LFW: a database for studying cross-pose face recognition in unconstrained environments[R]. Beijing: Beijing University of Posts and Telecommunications, 2018.
[40] SENGUPTA S, CHEN J C, CASTILLO C, et al. Frontal to profile face verification in the wild[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision, 2016: 1-9.
[41] MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C, et al. AgeDB: the first manually ected, in-the-wild age database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 51-59.
[42] CAO Q, SHEN L, XIE W D, et al. VGGFace2: a dataset for recognising faces across pose and age[C]//Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, 2018: 67-74.
[43] WHITELAM C, TABORSKY E, BLANTON A, et al. IARPA Janus Benchmark?B face dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 592-600.
[44] MAZE B, ADAMS J, DUNCAN J A, et al. IARPA Janus Benchmark-C: face dataset and protocol[C]//Proceedings of the International Conference on Biometrics, 2018: 158-165.
[45] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[46] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |