计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (13): 36-50.DOI: 10.3778/j.issn.1002-8331.2309-0481
陈囿任,李勇,温明,孙驰
出版日期:
2024-07-01
发布日期:
2024-07-01
CHEN Youren, LI Yong, WEN Ming, SUN Chi
Online:
2024-07-01
Published:
2024-07-01
摘要: 多模态知识图谱融合了视觉、文本等多种模态信息,并以图的形式展现知识结构。随着人工智能的发展,多模态知识图谱在推荐系统、智能问答和知识搜索等领域发挥了重要作用。与传统知识图谱相比,多模态知识图谱可以多维度理解和展现知识,有更好的表示和应用能力。为了深入研究多模态知识图谱,对多模态知识图谱价值及类别进行了详细的分析与阐述,根据多模态知识图谱构建中融合方法的不同,从多源异构数据文本转换、表示学习、实体对齐、特征抽取方面进行对比和总结,重点对跨模态知识图谱融合技术分类叙述。对多模态知识图谱的应用进展进行了分析,并探讨了多模态知识图谱的局限性,提出了多模态知识图谱领域今后的研究方向。
陈囿任, 李勇, 温明, 孙驰. 多模态知识图谱融合技术研究综述[J]. 计算机工程与应用, 2024, 60(13): 36-50.
CHEN Youren, LI Yong, WEN Ming, SUN Chi. Research and Comprehensive Review on Multi-Modal Knowledge Graph Fusion Techniques[J]. Computer Engineering and Applications, 2024, 60(13): 36-50.
[1] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514. [2] CHEN Y H, LI H, LIU W H, et al. An overview of knowledge graph reasoning: key technologies and applications[J]. Journal of Sensor and Actuator Networks, 2022, 11(4): 78. [3] SHARMA K, GIANNAKOS M. Multimodal data capabilities for learning: what can multimodal data tell us about learning?[J]. British Journal of Educational Technology, 2020, 51(5): 1450-1484. [4] ZHU X, LI Z, WANG X, et al. Multi-modal knowledge graph construction and application: a survey[J]. IEEE Transactions on Knowledge & Data Engineering, 2022(1): 1-20. [5] 陈烨, 周刚, 卢记仓. 多模态知识图谱构建与应用研究综述[J]. 计算机应用研究, 2021, 38(12): 3535-3543. CHEN Y, ZHOU G, LU J C. Survey on construction and application research for multi-modal knowledge graphs[J]. Application Research of Computers, 2021, 38(12): 3535-3543. [6] CHEN X, JIA S, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. [7] ZHANG N, LI L, CHEN X, et al. Multimodal analogical reasoning over knowledge graphs[C]//Proceedings of the Eleventh International Conference on Learning Representations, 2022. [8] BOEHM K M, KHOSRAVI P, VANGURI R, et al. Harnessing multimodal data integration to advance precision oncology[J]. Nature Reviews Cancer, 2022, 22(2): 114-126. [9] WU X, DUAN J, PAN Y, et al. Medical knowledge graph: data sources, construction, reasoning, and applications[J]. Big Data Mining and Analytics, 2023, 6(2): 201-217. [10] O?ORO-RUBIO D, NIEPERT M, GARCíA-DURáN A, et al. Answering visual-relational queries in web-extracted knowledge graphs[C]//Proceedings of the 1st Conference on Automated Knowledge Base Construction (AKBC), 2019. [11] LIU Y, LI H, GARCIA-DURAN A, et al. MMKG: multi-modal knowledge graphs[C]//Proceedings of the 16th International Conference on Semantic Web (ESWC), 2019: 459-474. [12] FERRADA S, BUSTOS B, HOGAN A. IMGpedia: a linked dataset with content-based analysis of Wikimedia images[C]//Proceedings of the 16th International Semantic Web Conference, Vienna, Austria, Oct 21-25, 2017. Cham: Springer, 2017: 84-93. [13] ALBERTS H T, DESHPANDE Y R, et al. VisualSem: a high-quality knowledge graph for vision and language[C]//Proceedings of the 1st Workshop on Multilingual Representation Learning, 2021: 138-152. [14] WANG M, WANG H, QI G, et al. Richpedia: a large-scale, comprehensive multi-modal knowledge graph[J]. Big Data Research, 2020, 22: 100159. [15] LI M, ZAREIAN A, LIN Y, et al. GAIA: a fine-grained multimedia knowledge extraction system[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020: 77-86. [16] MA Y, WANG Z, LI M, et al. MMEKG: multi-modal event knowledge graph towards universal representation across modalities[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2022: 231-239. [17] ZHAO W, WU X. Boosting entity-aware image captioning with multi-modal knowledge graph[J]. IEEE Transactions on Multimedia, 2024, 26: 2659-2670. [18] ZHANG J, WANG J, WANG X, et al. AspectMMKG: a multi-modal knowledge graph with aspect-aware entities[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023: 3361-3370. [19] HUANG C, WANG J, WANG S, et al. A review of deep learning in dentistry[J]. Neurocomputing, 2023: 126629. [20] SUN R, CAO X, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020: 1405-1414. [21] HUANG J, CHEN Y, LI Y, et al. Medical knowledge-based network for patient-oriented visual question answering[J]. Information Processing & Management, 2023, 60(2): 103241. [22] ZHU J, HUANG C, DE MEO P. DFMKE: a dual fusion multi-modal knowledge graph embedding framework for entity alignment[J]. Information Fusion, 2023, 90: 111-119. [23] SUMMAIRA J, LI X, SHOIB A M, et al. Recent advances and trends in multimodal deep learning: a review[J]. arXiv:2105.11087, 2021. [24] LEE S J, RHO M. Multimodal deep learning applied to classify healthy and disease states of human microbiome[J]. Scientific Reports, 2022, 12(1): 1-11. [25] GAO J, LI P, CHEN Z, et al. A survey on deep learning for multimodal data fusion[J]. Neural Computation, 2020, 32(5): 829-864. [26] DA C, WANG P, YAO C. Levenshtein OCR[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 322-338. [27] WEN Y, LUO B, ZHAO Y. IMKGA-SM: interpretable multimodal knowledge graph answer prediction via sequence modeling[J]. arXiv:2301.02445, 2023. [28] LIU Z, XIAO L, CHEN J, et al. A multimodal knowledge graph for medical decision making centred around personal values[C]//Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2023: 1638-1643. [29] XU D, XU T, WU S, et al. Relation-enhanced negative sampling for multimodal knowledge graph completion[C]//Proceedings of the 30th ACM International Conference on Multimedia, 2022: 3857-3866. [30] 孙水发, 李小龙, 李伟生, 等. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. SUN S F, LI X L, LI W S, et al. Review of graph neural networks applied to knowledge graph reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52. [31] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014: 1112-1119. [32] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015: 2181-2187. [33] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 687-696. [34] FUSAR-POLI P. TRANSD recommendations: improving transdiagnostic research in psychiatry[J]. World Psychiatry, 2019, 18(3): 361-362. [35] NGUYEN D Q, SIRTS K, QU L, et al. STransE: a novel embedding model of entities and relationships in knowledge bases[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 460-466. [36] EBISU T, ICHISE R. TorusE: knowledge graph embedding on a lie group[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, 2018: 1819-1826. [37] HE S, LIU K, JI G, et al. Learning to represent knowledge graphs with Gaussian embedding[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, 2015: 623-632. [38] XIAO H, HUANG M, HAO Y, et al. TransG: a generative mixture model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 2316-2325. [39] WANG Y, WUMAIER A, SUN W, et al. TransH-RA: a learning model of knowledge representation by hyperplane projection and relational attributes[J]. IEEE Access, 2023, 11: 29510-29520. [40] WAN B, NIU Y, CHEN C, et al. TransRFT: a knowledge representation learning model based on a relational neighborhood and flexible translation[J]. Applied Sciences, 2023, 13(19): 10864. [41] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701-710. [42] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 855-864. [43] LEE J, CHUNG C, WHANG J J. InGram: inductive knowledge graph embedding via relation graphs[J]. arXiv:2305. 19987, 2023. [44] SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 926-934. [45] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the International Conference on Learning Representations (ICLR), 2015. [46] LI W, XIAO X, LIU J, et al. Leveraging graph to improve abstractive multi-document summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 6232-6243. [47] ZHANG Z, ZHANG F, ZHUANG F, et al. Knowledge graph error detection with hierarchical path structure[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023: 4430-4434. [48] PARK N, KAN A, DONG X L, et al. Estimating node importance in knowledge graphs using graph neural networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 596-606. [49] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on Semantic Web, Heraklion, Crete, Greece, Jun 3-7, 2018. Cham: Springer, 2018: 593-607. [50] MA T, HUANG L, LU Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-27. [51] HUANG Z, LI X, YE Y, et al. Multi-view knowledge graph fusion via knowledge-aware attentional graph neural network[J]. Applied Intelligence, 2023, 53(4): 3652-3671. [52] LIANG S, ZHU A, ZHANG J, et al. Hyper-node relational graph attention network for multi-modal knowledge graph completion[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 19(2): 1-21. [53] CHEN M, TIAN Y, YANG M, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 1511-1517. [54] 王欢, 宋丽娟, 杜方. 基于多模态知识图谱的中文跨模态实体对齐方法[J]. 计算机工程, 2023, 49(12): 88-95. WANG H, SONG L J, DU F. Chinese cross-modal entity alignment method based on multi-modal knowledge graph[J]. Computer Engineering, 2023, 49(12): 88-95. [55] CHEN F L, ZHANG D Z, HAN M L, et al. VLP: a survey on vision-language pre-training[J]. Machine Intelligence Research, 2023, 20(1): 38-56. [56] CHEN X, ZHANG N, LI L, et al. Hybrid transformer with multi-level fusion for multimodal knowledge graph completion[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 904-915. [57] KRICHEN M. Convolutional neural networks: a survey[J]. Computers, 2023, 12(8): 151. [58] YU H, SUN H, TAO J, et al. A multi-stage data augmentation and AD-ResNet-based method for EPB utilization factor prediction[J]. Automation in Construction, 2023, 147: 104734. [59] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning (PMLR), 2020: 1597-1607. [60] SINHA D, EL-SHARKAWY M. Thin MobileNet: an enhanced MobileNet architecture[C]//Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), 2019: 280-285. [61] LI R, YU J, LI F, et al. Automatic bridge crack detection using unmanned aerial vehicle and Faster R-CNN[J]. Construction and Building Materials, 2023, 362: 129659. [62] WANG W, BAO H, DONG L, et al. Image as a foreign language: BEiT pretraining for vision and vision-language tasks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 19175-19186. [63] YEH C H, HONG C Y, HSU Y C, et al. Decoupled contrastive learning[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 668-684. [64] RICHEMOND P H, TAM A, TANG Y, et al. The edge of orthogonality: a simple view of what makes BYOL tick[C]//Proceedings of the International Conference on Machine Learning (PMLR), 2023: 29063-29081. [65] PEHLIVAN H, DALVA Y, DUNDAR A. StyleRes: transforming the residuals for real image editing with StyleGAN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 1828-1837. [66] GANGWAR A, GONZáLEZ-CASTRO V, ALEGRE E, et al. Triple-BigGAN: semi-supervised generative adversarial networks for image synthesis and classification on sexual facial expression recognition[J]. Neurocomputing, 2023, 528: 200-216. [67] RAHALI A, AKHLOUFI M A. End-to-end transformer-based models in textual-based NLP[J]. AI, 2023, 4(1): 54-110. [68] ZHOU C, LI Q, LI C, et al. A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT[J]. arXiv:2302.09419, 2023. [69] FENG Z, ZHANG Z, YU X, et al. ERNIE-ViLG 2. 0: improving text-to-image diffusion model with knowledge-enhanced mixture-of-denoising-experts[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10135-10145. [70] KALE A S, PANDYA V, DI TROIA F, et al. Malware classification with Word2Vec, HMM2Vec, BERT, and ELMo[J]. Journal of Computer Virology and Hacking Techniques, 2023, 19(1): 1-16. [71] YANG Z L, DAI Z H. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 5753-5763. [72] LIU X, ZHENG Y, DU Z, et al. GPT understands, too[J]. arXiv:2103.10385, 2021. [73] KIM D, HONG S, CHOI Y H. SC VALL-E: style-controllable zero-shot text to speech synthesizer[J]. arXiv:2307.10550, 2023. [74] LATIF S, CUAYáHUITL H, PERVEZ F, et al. A survey on deep reinforcement learning for audio-based applications[J]. Artificial Intelligence Review, 2023, 56(3): 2193-2240. [75] YOSHIDA M, TOGO R, OGAWA T, et al. Off-screen sound separation based on audio-visual pre-training using binaural audio[J]. Sensors, 2023, 23(9): 4540. [76] OORD A, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio[J]. arXiv:1609.03499, 2016. [77] KURADA S, KURADA A. Poster: VGGish embeddings based audio classifiers to improve Parkinson’s disease diagnosis[C]//Proceedings of the 2020 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2020: 9-11. [78] SUN C, MYERS A, VONDRICK C, et al. VideoBERT: a joint model for video and language representation learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7464-7473. [79] LI L, CHEN Y C, CHENG Y, et al. Hero: hierarchical encoder for video+ language omni-representation pre-training[J]. arXiv:2005.00200, 2020. [80] SU W, ZHU X, CAO Y, et al. VL-BERT: pre-training of generic visual-linguistic representations[C]//Proceedings of the 2020 International Conference on Learning Representations (ICLR), 2020. [81] QI D, SU L, SONG J, et al. ImageBERT: cross-modal pre-training with large-scale weak-supervised image-text data[J]. arXiv:2001.07966, 2020. [82] LUO H, JI L, SHI B, et al. UniVL: a unified video and language pre-training model for multimodal understanding and generation[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 5100-5111. [83] TAN H, BANSAL M. LXMERT: learning cross-modality encoder representations from transformers[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 5100-5111. [84] YU F, TANG J, YIN W, et al. ERNIE-ViL: knowledge enhanced vision-language representations through scene graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 3208-3216. [85] LU J, BATRA D, PARIKH D, et al. ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 13-23. [86] KIM W, SON B, KIM I. VILT: vision-and-language transformer without convolution or region supervision[C]//Proceedings of the International Conference on Machine Learning (PMLR), 2021: 5583-5594. [87] BAO H, WANG W, DONG L, et al. VL-BEiT: generative vision-language pretraining[J]. arXiv:2206.01127, 2022. [88] BAO H, WANG W, DONG L, et al. VLMO: unified vision-language pre-training with mixture-of-modality-experts[C]//Advances in Neural Information Processing Systems, 2022, 35: 32897-32912. [89] ZHU L, YANG Y. ActBERT: learning global-local video-text representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8746-8755. [90] LI X. IMF: interactive multimodal fusion model for link prediction[C]//Proceedings of the ACM Web Conference, 2023: 2572-2580. [91] HAO Y, SONG H, DONG L, et al. Language models are general-purpose interfaces[J]. arXiv:2206.06336, 2022. [92] MITTAL T. M3er: multiplicative multimodal emotion recognition using facial, textual, and speech cues[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 1359-1367. [93] ZADEH A, LIANG P P, MAZUMDER N, et al. Memory fusion network for multi-view sequential learning[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, 2018: 5634-5641. [94] ZHANG Y, CHENG H, SHEN Z, et al. Pre-training multi-task contrastive learning models for scientific literature understanding[J]. arXiv:2305.14232, 2023. [95] CHO J M, LEI J, TAN H, et al. Unifying vision-and-language tasks via text generation[C]//Proceedings of the International Conference on Machine Learning (PMLR), 2021: 1931-1942. [96] UZKENT B, GARG A, ZHU W, et al. Dynamic inference with grounding based vision and language models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 2624-2633. [97] AISHWARYA K, MANNAT S, YANN L, et al. MDETR-modulated detection for end-to-end multi-modal understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1780-1790. [98] ZHU P, WANG X, ZHU L, et al. Prompt-based learning for unpaired image captioning[J]. IEEE Transactions on Multimedia, 2024, 26: 379-393. [99] JIAN Y, LIU T, TAO Y, et al. SimVLG: simple and efficient pretraining of visual language generative models[J]. arXiv:2310.03291, 2023. [100] DESAI K, KAUL G, AYSOLA Z, et al. RedCaps: web-curated image-text data created by the people, for the people[C]//Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. [101] GU J, MENG X, LU G, et al. Wukong: a 100 million large-scale Chinese cross-modal pre-training benchmark[C]//Advances in Neural Information Processing Systems, 2022, 35: 26418-26431. [102] PAREKH Z, BALDRIDGE J, CER D, et al. Crisscrossed captions: extended intramodal and intermodal semantic similarity judgments for MS-COCO[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, 2021: 2855-2870. [103] ZHAN X, WU Y, DONG X, et al. Product1M: towards weakly supervised instance-level product retrieval via cross-modal pretraining[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11782-11791. [104] SCHUHMANN C, VENCU R, BEAUMONT R, et al. Laion-400m: open dataset of clip-filtered 400 million image-text pair[C]//Proceedings of the NeurIPS Workshop Datacentric AI, 2021. [105] MONDAL P, CHAKDER D, RAJ S, et al. Graph convolutional neural network for multimodal movie recommendation[C]//Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, 2023: 1633-1640. [106] WU Y, WU X, LI J, et al. MMpedia: a large-scale multi-modal knowledge graph[C]///Proceedings of the International Semantic Web Conference. Cham: Springer, 2023: 18-37. [107] 梅宏, 杜小勇, 金海, 等. 大数据技术前瞻[J]. 大数据, 2023, 9(1): 1-20. MEI H, DU X Y, JIN H, et al. Big data technologies forward-looking[J]. Big Data Research, 2023, 9(1): 1-20. [108] LIU J, ZHU X, LIU F, et al. OPT: omni-perception pre-trainer for cross-modal understanding and generation[J]. arXiv:2107.00249, 2021. [109] BI K, XIE L, ZHANG H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533-538. [110] TEAM G, ANIL R, BORGEAUD S, et al. Gemini: a family of highly capable multimodal models[J]. arXiv:2312.11805, 2023. |
[1] | 张洋宁, 朱静, 董瑞, 尤泽顺, 王震. 多层级信息增强异构图的篇章级话题分割模型[J]. 计算机工程与应用, 2024, 60(9): 203-211. |
[2] | 于丰瑞. 网络威胁技战术情报自动化识别提取研究综述[J]. 计算机工程与应用, 2024, 60(13): 1-22. |
[3] | 吴玉洁, 奚雪峰, 崔志明. 嵌入式静态知识图谱补全研究进展[J]. 计算机工程与应用, 2024, 60(12): 34-47. |
[4] | 高玮军, 朱婧, 赵华洋, 李磊. 基于TRF-IM模型的个性化酒店评论摘要生成[J]. 计算机工程与应用, 2023, 59(2): 135-142. |
[5] | 张明, 卢庆华, 黄元忠, 李瑞轩. 自然语言语法纠错的最新进展和挑战[J]. 计算机工程与应用, 2022, 58(6): 29-41. |
[6] | 唐焕玲, 王慧, 隗昊, 赵红磊, 窦全胜, 鲁明羽. 面向时钟领域的BERT-LCRF命名实体识别方法[J]. 计算机工程与应用, 2022, 58(18): 218-226. |
[7] | 王瑞平, 吴士泓, 张美航, 王小平. 视觉问答语言处理方法综述[J]. 计算机工程与应用, 2022, 58(17): 50-60. |
[8] | 孙宝山, 谭浩. 基于ALBERT-UniLM模型的文本自动摘要技术研究[J]. 计算机工程与应用, 2022, 58(15): 184-190. |
[9] | 王琴, 王鑫, 颜靖柯, 钟美玲, 曾静. 融合空间位置注意力机制的英语题注生成模型[J]. 计算机工程与应用, 2022, 58(12): 139-148. |
[10] | 冯钧, 张涛, 杭婷婷. 重叠实体关系抽取综述[J]. 计算机工程与应用, 2022, 58(1): 1-11. |
[11] | 姚贵斌,张起贵. 基于XLnet语言模型的中文命名实体识别[J]. 计算机工程与应用, 2021, 57(18): 156-162. |
[12] | 余同瑞,金冉,韩晓臻,李家辉,郁婷. 自然语言处理预训练模型的研究综述[J]. 计算机工程与应用, 2020, 56(23): 12-22. |
[13] | 达吾勒·阿布都哈依尔,努尔买买提·尤鲁瓦斯,刘 艳. 面向哈萨克语LVCSR的语言模型构建方法研究[J]. 计算机工程与应用, 2016, 52(24): 178-181. |
[14] | 方 刚1,张社民2. 三元统计语言模型对基因表达载体设计的优化[J]. 计算机工程与应用, 2016, 52(15): 60-64. |
[15] | 王秀珍,丛 瑞,王 飞. 一种面向在线查询的拼写纠错算法[J]. 计算机工程与应用, 2015, 51(14): 113-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||