计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (13): 51-65.DOI: 10.3778/j.issn.1002-8331.2310-0234

• 热点与综述 • 上一篇    下一篇

图神经网络在异常检测中的应用综述

陈佳乐,陈旭,景永俊,王叔洋   

  1. 1.北方民族大学 计算机科学与工程学院,银川 750030
    2.北方民族大学 电气信息工程学院,银川 750030
  • 出版日期:2024-07-01 发布日期:2024-07-01

Survey of Application of Graph Neural Network in Anomaly Detection

CHEN Jiale, CHEN Xu, JING Yongjun, WANG Shuyang   

  1. 1.School of Computer Science and Engineering, North Minzu University, Yinchuan 750030, China
    2.School of Electrical and Information Engineering, North Minzu University, Yinchuan 750030, China
  • Online:2024-07-01 Published:2024-07-01

摘要: 图数据常用于表示不同个体之间复杂的关系,例如社交网络、金融网络和微服务网络等。图神经网络(GNN)是一种用于处理图数据的深度学习模型,它可以有效捕获图数据中的结构信息和特征信息。异常检测是指从海量数据中找出不符合预期的数据。传统异常检测方法在检测图数据时通常不考虑数据之间的关系,而使用GNN进行异常检测的模型可以利用图结构和图特征进行学习,从而提高异常检测的准确性和鲁棒性。从三个方面对GNN在异常检测中的应用进行综述。介绍了GNN的基本框架,分别探讨了GNN在静态图异常检测、动态图异常检测和时序数据异常检测的最新研究进展,深入分析了该领域未来的研究方向。

关键词: 图神经网络, 异常检测, 静态图, 动态图, 时序数据

Abstract: Graph data is commonly used to represent complex relationships between different individuals, such as social networks, financial networks, and microservice networks. Graph neural network (GNN) is a deep learning model used for processing graph data, which can effectively capture structural and feature information in graph data. Anomaly detection refers to identifying unexpected data from a massive amount of data. Traditional anomaly detection methods usually do not consider the relationships between data when detecting graph data, while models that use GNN for anomaly detection can learn from graph structures and features, thereby improving the accuracy and robustness of anomaly detection. This paper reviews the application of GNN in anomaly detection from three aspects. Firstly, the basic framework of GNN is introduced. Secondly, the latest research progress of GNN in static graph anomaly detection, dynamic graph anomaly detection, and time series data anomaly detection is discussed separately. Finally, an in-depth analysis is conducted on the future research directions in this field.

Key words: graph neural network, anomaly detection, static graph, dynamic graph, time series data