计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (13): 51-65.DOI: 10.3778/j.issn.1002-8331.2310-0234
陈佳乐,陈旭,景永俊,王叔洋
出版日期:
2024-07-01
发布日期:
2024-07-01
CHEN Jiale, CHEN Xu, JING Yongjun, WANG Shuyang
Online:
2024-07-01
Published:
2024-07-01
摘要: 图数据常用于表示不同个体之间复杂的关系,例如社交网络、金融网络和微服务网络等。图神经网络(GNN)是一种用于处理图数据的深度学习模型,它可以有效捕获图数据中的结构信息和特征信息。异常检测是指从海量数据中找出不符合预期的数据。传统异常检测方法在检测图数据时通常不考虑数据之间的关系,而使用GNN进行异常检测的模型可以利用图结构和图特征进行学习,从而提高异常检测的准确性和鲁棒性。从三个方面对GNN在异常检测中的应用进行综述。介绍了GNN的基本框架,分别探讨了GNN在静态图异常检测、动态图异常检测和时序数据异常检测的最新研究进展,深入分析了该领域未来的研究方向。
陈佳乐, 陈旭, 景永俊, 王叔洋. 图神经网络在异常检测中的应用综述[J]. 计算机工程与应用, 2024, 60(13): 51-65.
CHEN Jiale, CHEN Xu, JING Yongjun, WANG Shuyang. Survey of Application of Graph Neural Network in Anomaly Detection[J]. Computer Engineering and Applications, 2024, 60(13): 51-65.
[1] GRUBBS F E. Procedures for detecting outlying observations in samples[J]. Technometrics, 1969, 11(1): 1-21. [2] WANG W, CHEN Q, LIU T, et al. A distributed online learning approach to detect anomalies for virtualized network slicing[C]//Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM). Madrid, Spain: IEEE, 2021: 1-6. [3] SAVAGE D, ZHANG X, YU X, et al. Anomaly detection in online social networks[J]. Social Networks, 2014, 39: 62-70. [4] SINGLA A, BERTINO E. How deep learning is making information security more intelligent[J]. IEEE Security & Privacy, 2019, 17(3): 56-65. [5] HODGE V, AUSTIN J. A survey of outlier detection methodologies[J]. Artificial Intelligence Review, 2004, 22(2): 85-126. [6] PEROZZI B, AKOGLU L. Scalable anomaly ranking of attributed neighborhoods[C]//Proceedings of the 2016 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2016: 207-215. [7] LI J, DANI H, HU X, et al. Radar: residual analysis for anomaly detection in attributed networks[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 2152-2158. [8] PENG Z, LUO M, LI J, et al. ANOMALOUS: a joint modeling approach for anomaly detection on attributed networks[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018: 3513-3519. [9] PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: a review[J]. ACM Computing Surveys, 2022, 54(2): 1-38. [10] JAVAID A, NIYAZ Q, SUN W, et al. A deep learning approach for network intrusion detection system[C]//Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies. New York: ACM, 2016. [11] PENG H K, MARCULESCU R. Multi-scale compositionality: identifying the compositional structures of social dynamics using deep learning[J]. Plos One, 2015, 10(4): e0118309. [12] L?NGKVIST M, KARLSSON L, LOUTFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Letters, 2014, 42: 11-24. [13] MA X, WU J, XUE S, et al. A comprehensive survey on graph anomaly detection with deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12012-12038. [14] TAM N T, WEIDLICH M, ZHENG B, et al. From anomaly detection to rumour detection using data streams of social platforms[J]. Proceedings of the VLDB Endowment, 2019, 12(9): 1016-1029. [15] MIAO K, SHI X, ZHANG W A. Attack signal estimation for intrusion detection in industrial control system[J]. Computers & Security, 2020, 96: 101926. [16] NGUYEN V H, SUGIYAMA K, NAKOV P, et al. FANG: leveraging social context for fake news detection using graph representation[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020: 1165-1174. [17] BRANCO B, ABREU P, GOMES A S, et al. Interleaved sequence RNNs for fraud detection[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 3101-3109. [18] KIM H, LEE B S, SHIN W Y, et al. Graph anomaly detection with graph neural networks: current status and challenges[J]. IEEE Access, 2022, 10: 111820-111829. [19] LEVY O, GOLDBERG Y. Neural word embedding as implicit matrix factorization[C]//Advances in Neural Information Processing Systems, 2014. [20] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the International Conference on Learning Representations, 2013. [21] MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 5425-5434. [22] ZHENG L, LI Z, LI J, et al. AddGraph: anomaly detection in dynamic graph using attention-based temporal GCN[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019: 4419-4425. [23] ZHAO H, WANG Y, DUAN J, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 2020: 841-850. [24] 陈波冯, 李靖东, 卢兴见, 等. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7): 1436-1455. CHEN B F, LI J D, LU X J, et al. Survey of deep learning based graph anomaly detection methods[J]. Journal of Computer Research and Development, 2021, 58(7): 1436-1455. [25] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701-710. [26] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, 2015: 1067-1077. [27] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855-864. [28] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 1225-1234. [29] LEVIN K, LYZINSKI V. Laplacian eigenmaps from sparse, noisy similarity measurements[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 1988-2003. [30] RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012: 262-270. [31] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the International Machine Learning Society, 2017. [32] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the International Conference on Learning Representations, 2017. [33] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Neural Information Processing Systems, 2018. [34] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the International Conference on Learning Representations, 2018. [35] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the Extended Semantic Web Conference, 2017. [36] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the International Conference on Learning Representations, 2019. [37] WANG H, ZHOU C, CHEN X, et al. Graph stochastic neural networks for semi-supervised learning: supplemental material[C]//Neural Information Processing Systems, 2020. [38] ZHU S, PAN S, ZHOU C, et al. Graph geometry interaction learning[C]//Proceedings of the International Conference on Learning Representations, 2020. [39] DING K, LI J, BHANUSHALI R, et al. Deep anomaly detection on attributed networks[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2019. [40] PENG Z, LUO M, LI J, et al. A deep multi-view framework for anomaly detection on attributed networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(6): 2539-2552. [41] WANG J, WEN R, WU C, et al. FdGars: fraudster detection via graph convolutional networks in online app review system[C]//Proceedings of the 2019 World Wide Web Conference on Companion. San Francisco: ACM, 2019: 310-316. [42] ZHENG Y, JIN M, LIU Y, et al. Generative and contrastive self-supervised learning for graph anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12220-12233. [43] VELI?KOVI? P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceedings of the International Conference on Learning Representations, 2018. [44] LI Y, HUANG X, LI J, et al. SpecAE: spectral autoencoder for anomaly detection in attributed networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, 2019: 2233-2236. [45] LIU Y, JIN M, PAN S, et al. Graph self-supervised learning: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5879-5900. [46] LIU Y, LI Z, PAN S, et al. Anomaly detection on attributed networks via contrastive self-supervised learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2378-2392. [47] JIN M, LIU Y, ZHENG Y, et al. ANEMONE: graph anomaly detection with multi-scale contrastive Learning[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 3122-3126. [48] HUANG Y, WANG L, ZHANG F, et al. Unsupervised graph outlier detection: problem revisit, new insight, and superior method[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering, Anaheim, 2023: 2565-2578. [49] ZHAO T, JIANG T, SHAH N, et al. A synergistic approach for graph anomaly detection with pattern mining and feature learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2393-2405. [50] DUAN D, TONG L, LI Y, et al. AANE: anomaly aware network embedding for anomalous link detection[C]//Proceedings of the 2020 IEEE International Conference on Data Mining, Sorrento, 2020: 1002-1007. [51] ZHANG G, LI Z, HUANG J, et al. eFraudCom: an e-commerce fraud detection system via competitive graph neural networks[J]. ACM Transactions on Information Systems, 2022, 40(3): 1-29. [52] ZHANG Z, ZHAO L. Unsupervised deep subgraph anomaly detection[C]//Proceedings of the 2022 IEEE International Conference on Data Mining, Orlando, 2022: 753-762. [53] WANG H, ZHOU C, WU J, et al. Deep structure learning for fraud detection[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, 2018: 567-576. [54] HUANG L, ZHU Y, GAO Y, et al. Hybrid-order anomaly detection on attributed networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12249-12263. [55] RUFF L, VANDERMEULEN R A, GORNITZ N, et al. Deep one-class classi?cation[C]//Proceedings of the International Conference on Machine Learning, 2018. [56] QIU C, KLOFT M, MANDT S, et al. Raising the bar in graph-level anomaly detection[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 2022: 2196-2203. [57] YANG C, WEN H, HOOI B, et al. A multi-scale reconstruction method for the anomaly detection in stochastic dynamic networks[J]. Neurocomputing, 2023, 518: 482-495. [58] CHENG D, WANG X, ZHANG Y, et al. Graph neural network for fraud detection via spatial-temporal attention[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3800-3813. [59] FANG Y, ZHAO Z, XU Y, et al. Log anomaly detection based on hierarchical graph neural network and label contrastive coding[J]. Computers, Materials & Continua, 2023, 74(2): 4099-4118. [60] ZHANG Z, LI Y, WANG W, et al. Malware detection with dynamic evolving graph convolutional networks[J]. International Journal of Intelligent Systems, 2022, 37(10): 7261-7280. [61] CAI L, CHEN Z, LUO C, et al. Structural temporal graph neural networks for anomaly detection in dynamic graphs[C]//Proceedings of the International Conference on Information and Knowledge Management, 2020. [62] ZHU D, MA Y, LIU Y. A flexible attentive temporal graph networks for anomaly detection in dynamic networks[C]//Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China, 2020: 870-875. [63] WANG B, HAYASHI T, OHSAWA Y. Hierarchical graph convolutional network for data evaluation of dynamic graphs[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020: 4475-4481. [64] DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021. [65] AZIM E, WANG D, FU Y. Deep graph stream SVDD: anomaly detection in cyber-physical systems[C]//Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2023. [66] CHEN Z, CHEN D, ZHANG X, et al. Learning graph structures with transformer for multivariate time series anomaly detection in IoT[J]. IEEE Internet of Things Journal, 2022, 9(12): 9179-9189. [67] DING C, SUN S, ZHAO J. MST-GAT: a multimodal spatial-temporal graph attention network for time series anomaly detection[J]. Information Fusion, 2023, 89: 527-536. [68] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv:1803.01271, 2018. [69] DAI E, CHEN J. Graph-augmented normalizing flows for anomaly detection of multiple time series[C]//Proceedings of the International Conference on Learning Representations, 2022. [70] ZHOU L, ZENG Q, LI B. Hybrid anomaly detection via multihead dynamic graph attention networks for multivariate time series[J]. IEEE Access, 2022, 10: 40967-40978. [71] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Neural Information Processing Systems, 2014. [72] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Neural Information Processing Systems, 2017. [73] TANG L, LIU H. Relational learning via latent social dimensions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 817-826. [74] DOU Y, SHU K, XIA C, et al. User preference-aware fake news detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 2051-2055. [75] AHMED C M, PALLETI V R, MATHUR A P. WADI: a water distribution testbed for research in the design of secure cyber physical systems[C]//Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, 2017: 25-28. [76] MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]//Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks, 2016: 31-36. [77] HAN Y, DU Q, XU J, et al. LWS: a framework for log-based workload simulation in session-based SUT[J]. Journal of Systems and Software, 2023, 203: 111735. [78] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93. [79] BANDYOPADHYAY S, LOKESH N, VIVEK S V, et al. Outlier resistant unsupervised deep architectures for attributed network embedding[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, 2020: 25-33. [80] LIU S, HOOI B, FALOUTSOS C. HoloScope: topology-and-spike aware fraud detection[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 2017: 1539-1548. [81] CHEN S, QIAN J, CHEN H, et al. Anomaly subgraph mining in large-scale social networks[C]//Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, 2019: 883-890. [82] PEI Y, LYU F, VAN IPENBURG W, et al. Subgraph anomaly detection in financial transaction networks[C]//Proceedings of the First ACM International Conference on AI in Finance. New York: ACM, 2020: 1-8. [83] ALSENTZER E, FINLAYSON S G, LI M M, et al. Subgraph neural networks[C]//Neural Information Processing Systems, 2020. [84] KING I J, HUANG H H. Euler: detecting network lateral movement via scalable temporal link prediction[J]. ACM Transactions on Privacy and Security, 2023, 26(3): 1-36. [85] HUANG Q, YU J, WU J, et al. Heterogeneous graph attention networks for early detection of rumors on twitter[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, 2020: 1-8. [86] LU Y J, LI C T. GCAN: graph-aware co-attention networks for explainable fake news detection on social media[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 505-514. |
[1] | 张俊三, 肖森, 高慧, 邵明文, 张培颖, 朱杰. 基于邻域采样的多任务图推荐算法[J]. 计算机工程与应用, 2024, 60(9): 172-180. |
[2] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
[3] | 刘世鹏, 宁德军, 马崛. 针对光伏发电功率预测的LSTformer模型[J]. 计算机工程与应用, 2024, 60(9): 317-325. |
[4] | 汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[5] | 郑小丽, 王巍, 杜雨晅, 张闯. 面向会话的需求感知注意图神经网络推荐模型[J]. 计算机工程与应用, 2024, 60(7): 128-140. |
[6] | 唐宇, 吴贞东. 基于残差网络的轻量级图卷积推荐方法[J]. 计算机工程与应用, 2024, 60(3): 205-212. |
[7] | 邓戈龙, 黄国恒, 陈紫嫣. 图神经网络的类别解耦小样本分类[J]. 计算机工程与应用, 2024, 60(2): 129-136. |
[8] | 梁梅霖, 段友祥, 昌伦杰, 孙歧峰. 邻域信息分层感知的知识图谱补全方法[J]. 计算机工程与应用, 2024, 60(2): 147-153. |
[9] | 黄秀丽, 于鹏飞, 高先周. 横向联邦学习系统的安全聚合方法[J]. 计算机工程与应用, 2024, 60(14): 294-305. |
[10] | 周诚辰, 于千城, 张丽丝, 胡智勇, 赵明智. Graph Transformers研究进展综述[J]. 计算机工程与应用, 2024, 60(14): 37-49. |
[11] | 肖雨微, 姚溪子, 胡学敏, 罗显志. 面向高密度交通场景的自动驾驶运动规划[J]. 计算机工程与应用, 2024, 60(14): 114-122. |
[12] | 吴彦文, 谭溪晨, 葛迪, 韩园, 熊栩捷, 陈宇迪. 结合重构和图预测的多元时序异常检测框架[J]. 计算机工程与应用, 2024, 60(13): 301-310. |
[13] | 武天昊, 董明刚, 谭若琦. 基于边界过采样的图节点不平衡分类算法[J]. 计算机工程与应用, 2024, 60(13): 92-101. |
[14] | 谢伟, 卢士达, 时宽治, 王虹岚, 顾荣斌, 黄君, 李静. 面向工业物联网时序数据的异常检测方法[J]. 计算机工程与应用, 2024, 60(12): 270-282. |
[15] | 李鹏飞, 贺洋, 毋建宏. 融合全局特征的时空网络兴趣点推荐算法[J]. 计算机工程与应用, 2024, 60(11): 75-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||