[1] LI Y, ZENG J B, SHAN S G, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2439-2450.
[2] PAN B W, WANG S F, XIA B. Occluded facial expression recognition enhanced through privileged information[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 566-573.
[3] LIU C, HIROTA K, DAI Y P. Patch attention convolutional vision transformer for facial expression recognition with occlusion[J]. Information Sciences, 2023, 619: 781-794.
[4] GAO J X, ZHAO Y Y. TFE: a transformer architecture for occlusion aware facial expression recognition[J]. Frontiers in Neurorobotics, 2021, 15: 763100.
[5] LIAO J X, WANG X P. Self-supervised GAN for occluded facial expression recognition[C]//Proceedings of the 2021 International Conference on Neuromorphic Computing (ICNC), 2021: 386-393.
[6] 杨鲁月, 张树美, 赵俊莉. 基于并行Gan的有遮挡动态表情识别[J]. 计算机工程与应用, 2021, 57(24): 168-178.
YANG L Y, ZHANG S M, ZHAO J L. Dynamic expression recognition with partial occlusion based on parallel Gan[J]. Computer Engineering and Applications, 2021, 57(24): 168-178.
[7] WANG K, PENG X J, YANG J F, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069.
[8] YOVEL G, DUCHAINE B. Specialized face perception mechanisms extract both part and spacing information: evidence from developmental prosopagnosia[J]. Journal of Cognitive Neuroscience, 2006, 18(4): 580-593.
[9] LI S, DENG W H, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2852-2861.
[10] ZENG J B, SHAN S G, CHEN X L. Facial expression recognition with inconsistently annotated datasets[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 222-237.
[11] CAI J, MENG Z B, KHAN A S, et al. Identity-free facial expression recognition using conditional generative adversarial network[C]//Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), 2021: 1344-1348.
[12] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[13] WANG K, PENG X J, YANG J F, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6897-6906.
[14] MAJUMDER A, BEHERA L, SUBRAMANIAN V K. Automatic facial expression recognition system using deep network-based data fusion[J]. IEEE Transactions on Cybernetics, 2016, 48(1): 103-114.
[15] ZHONG L, LIU Q S, YANG P, et al. Learning multiscale active facial patches for expression analysis[J]. IEEE Transactions on Cybernetics, 2014, 45(8): 1499-1510.
[16] ZHAO Z Q, LIU Q S, WANG S M. Learning deep global multi-scale and local attention features for facial expression recognition in the wild[J]. IEEE Transactions on Image Processing, 2021, 30: 6544-6556.
[17] LI Y, ZENG J B, SHAN S G, et al. Patch-gated CNN for occlusion-aware facial expression recognition[C]//Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), 2018: 2209-2214.
[18] LI Y J, LU G M, LI J X, et al. Facial expression recognition in the wild using multi-level features and attention mechanisms[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 451-462.
[19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017, 30.
[20] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision, 2020: 213-229.
[21] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020.
[22] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[23] D’ASCOLI S, TOUVRON H, LEAVITT M L, et al. Convit: improving vision transformers with soft convolutional inductive biases[C]//Proceedings of the International Conference on Machine Learning, 2021: 2286-2296.
[24] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[25] MA F Y, SUN B, LI S T. Facial expression recognition with visual transformers and attentional selective fusion[J]. IEEE Transactions on Affective Computing, 2023, 14(2): 1236-1248.
[26] LI H T, SUI M Z, ZHAO F, et al. MVT: mask vision transformer for facial expression recognition in the wild[J]. arXiv:2106.04520, 2021.
[27] AOUAYEB M, HAMIDOUCHE W, SOLADIE C, et al. Learning vision transformer with squeeze and excitation for facial expression recognition[J]. arXiv:2107.03107, 2021.
[28] XUE F L, WANG Q C, GUO G D. Transfer: learning relation-aware facial expression representations with transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3601-3610.
[29] XUE F L, WANG Q C, TAN Z C, et al. Vision transformer with attentive pooling for robust facial expression recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 3244-3256.
[30] WANG Q C, WU T Y, ZHENG H, et al. Hierarchical pyramid diverse attention networks for face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8326-8335.
[31] XIE S Y, HU H F, WU Y B. Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition[J]. Pattern Recognition, 2019, 92: 177-191.
[32] BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction, 2016: 279-283.
[33] GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[C]//Proceedings of the 20th International Conference on Neural Information Processing, Daegu, Korea, Nov 3-7, 2013. Berlin, Heidelberg: Springer, 2013: 117-124.
[34] MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2017, 10(1): 18-31.
[35] GUO Y D, ZHANG L, HU Y X, et al. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016. Cham: Springer, 2016: 87-102.
[36] MA F Y, SUN B, LI S T. Robust facial expression recognition with convolutional visual transformers[J]. arXiv:2103.
16854, 2021.
[37] 袁文雪. 基于特征解耦的遮挡人脸表情识别方法研究[D]. 成都: 四川大学, 2022.
YUAN W X. Disentangled feature-based occluded facial expression recognition[D]. Chengdu: Sichuan University, 2022.
[38] 张本文, 高瑞玮, 乔少杰. 新型融合注意力机制的遮挡面部表情识别框架[J]. 重庆理工大学学报 (自然科学), 2023, 37(9): 217-226.
ZHANG B W, GAO R W, QIAO S J. A novel framework for occluded facial expression recognition by integrating attention mechanism[J]. Journal of Chongqing University of Technology (Natural Science) , 2023, 37(9): 217-226. |