[1] 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29.
GAO T, ZHANG X W, LI B. Review on application of deep learning in helmet wearing detection[J]. Computer Engineering and Applications, 2023, 59(6): 13-29.
[2] 张亚腾, 黄俊. 基于YOLOv7的钢表面缺陷检测[J]. 激光杂志, 2024, 45(3): 87-93.
ZHANG Y T, HUANG J. Steel surface defect detection based on YOLOv7[J]. Laser Journal, 2024, 45(3): 87-93.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[4] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems, 2016.
[5] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[6] 吴肖, 刘佳佳, 段平, 等. 基于YOLOv7的道路标识符检测[J/OL]. 激光杂志: 1-9[2023-09-08]. http://kns.cnki.net/kcms/detail/50.1085.TN.20230901.1434.016.html.
WU X, LIU J J, DUAN P, et al. Road identifier detection based on YOLOv7[J/OL]. Laser Journal: 1-9[2023?09?08].http://kns.cnki.net/kcms/detail/50.1085.TN.20230901.1434.
016. html.
[7] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, October 11-14, 2016. [S.l.]: Springer International Publishing, 2016: 21-37.
[9] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[10] FANG Q, LI H, LUO X, et al. Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J]. Automation in Construction, 2018, 85: 1-9.
[11] 樊钰. 基于深度学习的安全帽检测系统设计与实现[D]. 呼和浩特: 内蒙古大学, 2019.
FAN Y. Design and implementation of detection system of wearing helmets based on deep learning[D]. Hohhot: Inner Mongolia University, 2019.
[12] 梁思成, 徐志明, 宋毅. YoloV3算法在安全帽检测中的应用[J]. 智能计算机与应用, 2020, 10(9): 1-5.
LIANG S C, XU Z M, SONG Y. YoloV3 application insafety helmet detection[J]. Intelligent Computer and Applications, 2020, 10(9): 1-5.
[13] ZHOU F, ZHAO H, NIE Z. Safety helmet detection based on YOLOv5[C]//2021 IEEE International Conference on Power Electronics, Computer Applications, 2021: 6-11.
[14] 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207.
YANG Y B, LI D. Lightweight helmet wearing detection algorithm of improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(9): 201-207.
[15] 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
[16] 祁泽政, 徐银霞. 改进YOLOv5s算法的安全帽佩戴检测研究[J]. 计算机工程与应用, 2023, 59(14): 176-183.
QI Z Z, XU Y X. Research on helmet wearing detection of improved YOLOv5s algorithm[J]. Computer Engineering and Applications, 2023, 59(14): 176-183.
[17] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[18] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[19] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |