计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (10): 30-46.DOI: 10.3778/j.issn.1002-8331.2310-0395
孙露露,刘建平,王健,邢嘉璐,张越,王晨阳
出版日期:
2024-05-15
发布日期:
2024-05-15
SUN Lulu, LIU Jianping, WANG Jian, XING Jialu, ZHANG Yue, WANG Chenyang
Online:
2024-05-15
Published:
2024-05-15
摘要: 细粒度图像分类(fine-grained image classification,FGIC)一直是计算机视觉领域中的重要问题。与传统图像分类任务相比,FGIC的挑战在于类间对象极其相似,使任务难度进一步增加。随着深度学习的发展,Vision Transformer(ViT)模型在视觉领域掀起热潮,并被引入到FGIC任务中。介绍了FGIC任务所面临的挑战,分析了ViT模型及其特性。主要根据模型结构全面综述了基于ViT的FGIC算法,包括特征提取、特征关系构建、特征注意和特征增强四方面内容,对每种算法进行了总结,并分析了它们的优缺点。通过对不同ViT模型在相同公用数据集上进行模型性能比较,以验证它们在FGIC任务上的有效性。最后指出了目前研究的不足,并提出未来研究方向,以进一步探索ViT在FGIC中的潜力。
孙露露, 刘建平, 王健, 邢嘉璐, 张越, 王晨阳. 细粒度图像分类上Vision Transformer的发展综述[J]. 计算机工程与应用, 2024, 60(10): 30-46.
SUN Lulu, LIU Jianping, WANG Jian, XING Jialu, ZHANG Yue, WANG Chenyang. Survey of Vision Transformer in Fine-Grained Image Classification[J]. Computer Engineering and Applications, 2024, 60(10): 30-46.
[1] 李祥霞, 吉晓慧, 李彬. 细粒度图像分类的深度学习方法[J]. 计算机科学与探索, 2021, 15(10): 1830-1842. LI X X, JI X H, LI B. Deep learning method for fine-grained image categorization[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1830-1842. [2] ELINDER P, BRANSON S, MITA T, et al. The CalTech-UCSD birds-200-2011 dataset[R]. California Institute of Technology, 2011. [3] KHOSLA A, JAYADEVAPRAKASH N, YAO B, et al. Novel dataset for fine-grained image categorization: Stanford dogs[C]//Proceedings of the 2011 CVPR Workshop on Fine-Grained Visual Categorization, 2011. [4] KRAUSE J, STARK M, DENG J, et al. 3D object representations for fine-grained categorization[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, Sydney, 2013: 554-561. [5] LUO W, YANG X T, MO X H, et al. Cross-X learning for fine-grained visual categorization[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, 2019: 8241-8250. [6] GAO Y, HAN X T, WANG X, et al. Channel interaction networks for fine-grained image categorization[C]//Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications, Changchun, 2022: 606-611. [7] 何凯, 冯旭, 高圣楠, 等. 基于多尺度特征融合与反复注意力机制的细粒度图像分类算法[J]. 天津大学学报 (自然科学与工程技术版), 2020, 53(10): 1077-1085. HE K, FENG X, GAO S N, et al. Fine-grained image classification algorithm using multi-scale feature fusion and re-attention mechanism[J]. Journal of Tianjin University (Science and Technology), 2020, 53(10): 1077-1085. [8] ZHANG Y. A fine-grained image classification and detection method based on convolutional neural network fused with attention mechanism[J]. Computational Intelligence and Neuroscience, 2022: 2974960. [9] ZENG R, HE J S. Grouping bilinear pooling for fine-grained image classification[J]. Applied Sciences, 2022, 12(10): 5063. [10] 解耀华, 章为川, 任劼, 等. 基于自适应特征融合的小样本细粒度图像分类[J]. 计算机工程与应用, 2023, 59(3): 184-192. XIE J H, ZHANG W C, REN J, et al. Adaptive feature fusion embedding network for few shot fine-grained image classification[J]. Computer Engineering and Applications, 2023, 59(3): 184-192. [11] YU C J, ZHAO X Y, ZHENG Q, et al. Hierarchical bilinear pooling for fine-grained visual recognition[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 595-610. [12] SONG J W, YANG R Y. Feature boosting, suppression, and diversification for fine-grained visual classification[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, Shenzhen, 2021: 1-8. [13] LIU D C, WANG Y, MASE K J, et al. Recursive multi-scale channel-spatial attention for fine-grained image classification[J]. IEICE Transactions on Information and Systems, 2022, 105-D(3): 713-726. [14] ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 13130-13137. [15] LI Z H, GU T C, LI B, et al. ConvNeXt-based fine-grained image classification and bilinear attention mechanism model[J]. Applied Sciences, 2022, 12(18): 9016. [16] LIU M, ZHANG C J, BAI H H, et al. Cross-part learning for fine-grained image classification[J]. IEEE Transactions on Image Processing, 2022, 31: 748-758. [17] LIU C B, XIE H T, ZHA Z J, et al. Filtration and distillation: enhancing region attention for fine-grained visual categorization[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 11555-11562. [18] 廖开阳, 黄港, 郑元林, 等. 互补注意多样性特征融合网络的细粒度分类[J]. 中国图象图形学报, 2023, 28(8): 2420-2431. LIAO K Y, HUANG G, ZHENG Y L, et al. Fine-grained classification of complementary attention diversity feature fusion network[J]. Journal of Image and Graphics, 2023, 28(8): 2420-2431. [19] 张文轩, 吴秦. 基于多分支注意力增强的细粒度图像分类[J]. 计算机科学, 2022, 49(5): 105-112. ZAHNG W X, WU Q. Fine-grained image classification based on multi-branch attention-augmentation[J]. Computer Science, 2022, 49(5): 105-112. [20] 吕冬健, 王春立. 可变尺寸循环注意力模型及应用研究[J]. 计算机工程与应用, 2022, 58(12): 243-248. LYU D J, WANG L C. Variable size for recurrent attention model and application research[J]. Computer Engineering and Applications, 2022, 58(12): 243-248. [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 6000-6010. [22] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations, May 3-7, 2021. [23] 郑世杰, 王高才. 基于ConvNeXt热图定位和对比学习的细粒度图像分类研究[J]. 计算机科学, 2023, 50(10): 119-125. ZHENG S J, WANG G C. Study on fine-grained image classification based on ConvNeXt heatmap localization and contrastive learning[J]. Computer Science, 2023, 50(10): 119-125. [24] 申志军, 穆丽娜, 高静, 等. 细粒度图像分类综述[J]. 计算机应用, 2023, 43(1): 51-60. SHEN Z J, MU L N, GAO J, et al. Review of fine-grained image categorization[J]. Journal of Computer Applications, 2023, 43(1): 51-60. [25] WEI X S, SONG Y Z, MAC AODHA O, et al. Fine-grained image analysis with deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8927-8948. [26] LIU Y, ZHANG Y, WANG Y X, et al. A survey of visual transformers[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. DOI:10.1109/TNNLS.2022. 3227717. [27] 李清格, 杨小冈, 卢瑞涛, 等. 计算机视觉中的Transformer发展综述[J]. 小型微型计算机系统, 2023, 44(4): 850-861. LI Q G, YANG X G, LU R T, et al. Transformer in computer vision: a survey[J]. Journal of Chinese Computer Systems, 2023, 44(4): 850-861. [28] 周丽娟, 毛嘉宁. 视觉Transformer识别任务研究综述[J]. 中国图象图形学报, 2023, 28(10): 2969-3003. ZHOU L J, MAO Y N. Vision Transformer-based recognition tasks: a critical review[J]. Journal of Image and Graphics, 2023, 28(10): 2969-3003. [29] ZHANG Y, CHEN W, ZANG Y. Fine-grained vision categorization with vision transformer: a survey[C]//Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, 2022: 1910-1915. [30] KUMAR K G S, VENKATESAN A, SELVARAJ D, et al. Rapid and accurate diagnosis of covid-19 cases from chest X-ray images through an optimized features extraction approach[J]. Electronics, 2022, 11(17): 5616. [31] WEI S X, CUI Q, YANG L, et al. RPC: a large-scale retail product checkout dataset[J]. arXiv:1901.07249, 2019. [32] JIA M L, SHI M Y, SIROTENKO S, et al. FashionPedia: ontology, segmentation, and an attribute localization dataset[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 316-332. [33] KHAN SD, ULLAH H. A survey of advances in vision-based vehicle re-identification[J]. Computer Vision and Image Understanding, 2019, 182(1): 50-63. [34] YIN J H, WU A C, ZHENG W S. Fine-grained person re-identification[J]. International Journal of Computer Vision, 2020, 128(6): 1654-1672. [35] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. [36] BERA A, WHARTON Z, LIU Y H, et al. SR-GNN: spatial relation-aware graph neural network for fine-grained image categorization[J]. IEEE Transactions on Image Processing, 2022, 31(1): 6017-6031. [37] LIU H, ZHANG C, XIE B C, et al. Affinity relation-aware fine-grained bird image recognition for robot vision tracking via transformers[C]//Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics, 2022: 662-667. [38] 向旭宇, 刘亚捷, 曾彬等. 基于Transformer双线性网络的细粒度图像分类方法[J]. 华中科技大学学报 (自然科学版), 2024, 52(2): 84-89. XIANG X Y, LIU Y J, ZENG B, et al. Fine grained image classification network based on Transformer bilinear network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(2): 84-89. [39] 田战胜, 刘立波. 基于改进Transformer的细粒度图像分类模型[J]. 激光与光电子学进展, 2023, 60(2): 171-178. TIAN Z S, LIU L B. Fine-grained image classification model based on improved Transformer[J]. Laser & Optoelectronics Progress, 2023, 60(2): 171-178. [40] ZHANG Z C, CHEN Z D, WANG Y X, et al. ViT-FOD: a vision transformer based fine-grained object discriminator[J]. arXiv:2203.12816, 2022. [41] WANG Y, YE S, YU S J et al. R2-Trans: fine-grained visual categorization with redundancy reduction[J]. arXiv:2204. 10095, 2022. [42] 张天魁, 蔡昌利, 骆晓亮, 等. 基于多尺度特征Transformer的细粒度图像分类方法[J]. 北京邮电大学学报, 2023, 46(4): 70-75. ZAHNG T K, CAI C L, LUO X L, et al. Multi-scale feature transformer based fine-grained image classification method[J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(4): 70-75. [43] 陆妍, 王阳萍, 王文润. 基于Transformer的小样本细粒度图像分类方法[J]. 计算机工程与应用, 2023, 59(23): 219-227. LU Y, WANG Y P, WANG W R. Transformer-based few-shot and fine-grained image classification method[J]. Computer Engineering and Applications, 2023, 59(23): 219-227. [44] XU Q, WANG J H, JIANG B, et al. Fine-grained visual classification via internal ensemble learning Transformer[J]. IEEE Transactions on Multimedia, 2023, 25: 9015-9028. [45] DEMIDOV D, SHARIF M H, ABDURAHIMOV A, et al. Salient mask-guided vision transformer for fine-grained classification[J]. arXiv:2305.07102, 2023. [46] ZGAO Y F, LI J, CHEN X W, et al. Part-guided relational transformers for fine-grained visual recognition[J]. IEEE Transactions on Image Processing, 2021, 30(1): 9470-9481. [47] KIM S, NAM J, KO B C. ViT-NeT: interpretable vision transformers with neural tree decoder[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 11162-11172. [48] LIU H, ZHANG C, DENG Y J, et al. TransIFC: invariant cues-aware feature concentration learning for efficient fine-grained bird image classification[J]. IEEE Transactions on Multimedia, 2023. DOI:10.1109/TMM.2023.3238548. [49] WANG H, LI Y Y, LUO H C. Semantic feature integration network for fine-grained visual classification[J]. arXiv: 2302.10275, 2023. [50] 李佳盈, 蒋文婷, 杨林, 等. 基于ViT的细粒度图像分类[J]. 计算机工程与设计, 2023, 44(3): 916-921. LI J Y, JIANG W T, YANG L, et al. Fine-grained visual classification based on vision transformer[J]. Computer Engineering and Design, 2023, 44(3): 916-921. [51] WANG Q, WANG J J, DENG H Y, et al. AA-Trans: core attention aggregating transformer with information entropy selector for fine-grained visual classification[J]. Pattern Recognition, 2023, 140: 109547. [52] ZHU H W, KE W J, LI D, et al. Dual cross-attention learning for fine-grained visual categorization and object re-identification[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4682-4692. [53] SUN H B, HE X T, PENG Y X. SIM-Trans: structure information modeling transformer for fine-grained visual categorization[C]//Proceedings of the 30th ACM International Conference on Multimedia, New York, 2022: 5853-5861. [54] MOON J H, LEE J K, LEE Y L, et al. M2Former: multi-scale patch selection for fine-grained visual recognition[J]. arXiv:2308.02161, 2023. [55] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 10347-10357. [56] HE J, CHEN J, LIU S, et al. TransFG: a transformer architecture for fine-grained recognition[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 1174-1182. [57] CONDE M V, TURGUTLU K. Exploring vision transformers for fine-grained classification[J]. arXiv:2106.10587, 2021. [58] DO T, TRAN H, TJIPUTRA E, et al. Fine-grained visual classification using self assessment classifier[J]. arXiv:2205. 10529, 2022. [59] LYU Y L, JING L P, WANG J Q, et al. Siamese transformer with hierarchical concept embedding for fine-grained image recognition[J]. Science China: Information Sciences, 2023, 66(3): 132107. [60] JI R Y, LI J Y, ZHANG L B, et al. Dual transformer with multi-grained assembly for fine-grained visual classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 5009-5021. [61] BEHERA A, WHSRTON Z, HEWAGE P, et al. Context-aware attentional pooling (CAP) for fine-grained visual classification[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 929-937. [62] SU T, YE S, SONG C Q, et al. Mask-ViT: an object mask embedding in vision transformer for fine-grained visual classification[C]//Proceedings of the 2022 IEEE International Conference on Image Processing, 2022: 1626-1630. [63] WANG J, YU X H, GAO Y S. Feature fusion vision transformer for fine-grained visual categorization[C]//Proceedings of the 2021 British Machine Vision Conference, 2021. [64] HU Y Q, JIN X, ZHANG Y, et al. RAMS-Trans: recurrent attention multi-scale transformer for fine-grained image recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 4239-4248. [65] ZHANG Y, CAO J, ZHANG L, et al. A free lunch from ViT: adaptive attention multi-scale fusion transformer for fine-grained visual recognition[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022: 3234-3238. [66] HU X B, ZHU S N, PENG T L. HAVT: hierarchical attention vision transformer for fine-grained visual classification[J]. Journal of Visual Communication and Image Representation, 2023, 91(C): 103755. [67] YU Y, WANG J G. Hybrid granularities transformer for fine-grained image recognition[J]. Entropy, 2023, 25(4): 601. [68] ZHENG Z W, ZHOU J X, GAN J H, et al. Fine-grained image classification based on cross-attention network[J]. International Journal on Semantic Web and Information Systems, 2022, 18(1): 1-18. [69] LIU X D, WANG L L, HAN X G. Transformer with peak suppression and knowledge guidance for fine-grained image recognition[J]. Neurocomputing, 2022, 492: 137-149. [70] CHOU P Y, LIN C H, KAO W C. A novel plug-in module for fine-grained visual classification[J]. arXiv:2202.03822, 2022. [71] LV X Y, XIA H, LI N, et al. MFVT: multilevel feature fusion vision transformer and RAMix data augmentation for fine-grained visual categorization[J]. Electronics, 2022, 11(21): 3552. [72] 项剑文, 陈泯融, 杨百冰. 结合Swin及多尺度特征融合的细粒度图像分类[J]. 计算机工程与应用, 2023, 59(20): 147-157. XIANG J W, CHEN M R, YANG B B. Fine-grained image classification combining Swin and multi-scale feature fusion[J]. Computer Engineering and Applications, 2023, 59(20): 147-157. [73] CHOU P Y, KAO Y Y, LIN C H. Fine-grained visual classification with high-temperature refinement and background suppression[J]. arXiv:2303.06442, 2023. [74] 黄港, 郑元林, 廖开阳, 等. 互补注意多样性特征融合网络的细粒度分类[J]. 中国图象图形学报, 2023, 28(8): 2420-2431. HUANG G, ZHENG Y L, LIAO K Y, et al. Mutual attention diversity feature fusion network-relevant fine-grained classification[J]. Journal of Image and Graphics, 2023, 28(8): 2420-2431. [75] DIAO Q S, JIANG Y, WEN B, et al. MetaFormer: a unified meta framework for fine-grained recognition[J]. arXiv:2203.02751, 2022. [76] 赵婷婷, 高欢, 常玉广, 等. 基于知识蒸馏与目标区域选取的细粒度图像分类方法[J]. 计算机应用研究, 2023, 40(9): 2863-2868. ZHAO T T, GAO H, CHANG Y G, et al. Knowledge distillation and target regions selection based fine-grained classification method[J]. Application Research of Computers, 2023, 40(9): 2863-2868. [77] YUAN L, CHEN Y P, WANG T, et al. Tokens-to-Token ViT: training vision transformers from scratch on ImageNet[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 538-547. [78] CHU X X, TIAN Z, ZHANG B, et al. Conditional positional encodings for vision transformers[J]. arXiv:2102.10882, 2021. [79] LIU Z, LIN Y T, CAO Y, et al. Swin transformer-hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 9992-10002. [80] ARNAB A, DEHGHANI M, HEIGOLD G, et al. ViViT—a video vision transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 6816-6826. [81] RADFORD A, KIM J, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8748-8763. [82] GAO P, GENG S J, ZHANG R R, et al. CLIP-Adapter: better vision-language models with feature adapters[J]. International Journal of Computer Vision, 2024, 132: 581-595. [83] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]//Proceedings of the 2008 6th Indian Conference on Computer Vision, Graphics & Image Processing, Bhubaneswar, 2008: 722-729. [84] MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft[J]. arXiv:1306.5151, 2013. [85] HORN G V, BRANSON S, FARRELL R, et al. Building a bird recognition app and largescale dataset with citizen scientists: the fine print in fine-grained dataset collection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 595-604. [86] HORN G V, AODHA O M, SONG Y, et al. The iNaturalist species classification and detection dataset[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8769-8778. [87] MIN W Q, LIU L H, WANG Z L, et al. ISIA Food-500: a dataset for large-scale food recognition via stacked global-local attention network[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 393-401. [88] HORN G V, COLE E, BEERY S, et al. Benchmarking representation learning for natural world image collections[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, 2021: 12884-12893. |
[1] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
[2] | 徐洪俊, 唐自强, 张锦东, 朱沛华. 钢材表面缺陷检测的YOLOv5s算法优化研究[J]. 计算机工程与应用, 2024, 60(7): 306-314. |
[3] | 宣茜, 韩润萍, 高静欣. 基于Conformer的实时多场景说话人识别模型[J]. 计算机工程与应用, 2024, 60(7): 147-156. |
[4] | 马亚美, 王双亭, 都伟冰. 双分支多维注意特征融合的高光谱图像分类[J]. 计算机工程与应用, 2024, 60(7): 192-203. |
[5] | 苏佳, 秦一畅, 贾泽, 王静. 基于ATO-YOLO的小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 68-77. |
[6] | 奉鑫鑫, 高曙. 基于多特征增强的手部姿态估计方法[J]. 计算机工程与应用, 2024, 60(6): 207-213. |
[7] | 王海群, 王炳楠, 葛超. 重参数化YOLOv8路面病害检测算法[J]. 计算机工程与应用, 2024, 60(5): 191-199. |
[8] | 陈磊, 习怡萌, 刘立波. 视频文本跨模态检索研究综述[J]. 计算机工程与应用, 2024, 60(4): 1-20. |
[9] | 姜文涛, 王德强, 张晟翀. 非线性时空正则化的相关滤波目标跟踪算法[J]. 计算机工程与应用, 2024, 60(3): 165-176. |
[10] | 谈光璞, 朱广丽, 韦斯羽. 基于情感特征增强的中文隐式情感分类模型[J]. 计算机工程与应用, 2024, 60(3): 196-204. |
[11] | 周燕, 廖俊玮, 刘翔宇, 周月霞, 曾凡智. 改进FCENet的自然场景文本检测算法[J]. 计算机工程与应用, 2024, 60(3): 228-236. |
[12] | 金海波, 马琳琳, 田桂源. 自适应Transformer网络下的单幅图像去雾方法[J]. 计算机工程与应用, 2024, 60(3): 237-245. |
[13] | 王小檬, 梁凤梅. 融合有效掩膜和局部增强的遮挡行人重识别[J]. 计算机工程与应用, 2024, 60(11): 156-164. |
[14] | 孙庆港, 王呈. 改进LSTM-AE算法的电梯知识库故障征兆预测[J]. 计算机工程与应用, 2023, 59(7): 311-318. |
[15] | 郭银景, 马新瑞, 许越铖, 孔芳, 吕文红. 水下光声图像空间配准算法研究综述[J]. 计算机工程与应用, 2023, 59(5): 14-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||