[1] 赵文涛, 田欢欢, 冯婷婷, 等. 融合相似度和预筛选模式的协同过滤算法[J]. 计算机科学与探索, 2023, 17(1): 217-227.
ZHAO W T, TIAN H H, FENG T T, et al. Collaborative filtering algorithm combining similarity measure and pre-filtering mode[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 217-227.
[2] LIU Z W, FAN Z W, WANG Y, et al. Augmenting sequential recommendation with pseudo-prior items via reversely pre-training transformer[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 1608-1612.
[3] WU L, LI J W, SUN P J, et al. DiffNet++: a neural influence and interest diffusion network for social recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34: 4753-4766.
[4] WU L, SUN P J, HONG R C, et al. Collaborative neural social recommendation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 464-476.
[5] TANG J L, WANG S H, HU X, et al. Recommendation with social dimensions[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016: 251-257.
[6] WU L, SUN P J, HONG R C, et al. SocialGCN: an efficient graph convolutional network based model for social recommendation[J]. arXiv:1811.02815, 2018.
[7] XIA Z X, ZHANG W Y, WENG Z Q. Social recommendation system based on hypergraph attention network[J]. Computational Intelligence and Neuroscience, 2021: 7716214.
[8] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 353-362.
[9] HUANG W J, WU J H, SONG W H, et al. Cross attention fusion for knowledge graph optimized recommendation[J]. Applied Intelligence, 2022, 52(9): 10297-10306.
[10] CIALDINI R B, GOLDSTEIN N J. Social influence: compliance and conformity[J]. Annual Review of Psychology, 2004, 55(1): 591-621.
[11] WU L, SUN P J, FU Y J, et al. A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 235-244.
[12] WU Q T, ZHANG H R, GAO X F, et al. Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems[C]//Proceedings of the 2019 World Wide Web Conference, 2019: 2091-2102.
[13] MA H, YANG H X, LYU M R, et al. SoRec: social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008: 931-940.
[14] YANG B, LEI Y, LIU J M, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633-1647.
[15] 夏鸿斌, 刘春芹, 刘渊. 融合社交关系和标签信息的混合新闻推荐算法[J]. 计算机应用研究, 2021, 38(1): 61-64.
XIA H B, LIU C Q, LIU Y. Hybrid news recommendation algorithm combining social relation and tag information[J]. Application Research of Computers, 2021, 38(1): 61-64.
[16] 陈平华, 廖威平.融合社交网络用户潜在因子的社会化推荐[J]. 计算机工程与应用, 2020, 56(24): 169-174.
CHEN P H, LIAO W P. Social recommendation based on latent factors of social network users[J]. Computer Engineering and Applications, 2020, 56(24): 169-174.
[17] LIU C, LI L, YAO X, et al. A survey of recommendation algorithms based on knowledge graph embedding[C]//Proceedings of the 2019 IEEE International Conference on Computer Science and Educational Informatization, Kunming, Aug 16-19, 2019: 168-171.
[18] CHARI S, QI M, AGU N N, et al. Making study populations visible through knowledge graphs[C]//Proceedings of the 18th International Semantic Web Conference, 2019: 53-68.
[19] WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018: 1835-1844.
[20] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019: 950-958.
[21] WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the 2019 World Wide Web Conference, 2019: 2000-2010.
[22] FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]//Proceedings of the 2019 World Wide Web Conference, 2019: 417-426.
[23] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009: 452-461.
[24] ZHAO T, MCAULEY J L, KING I. Leveraging social connections to improve personalized ranking for collaborative filtering[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, 2014: 261-270.
[25] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 639-648. |