计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (1): 1-14.DOI: 10.3778/j.issn.1002-8331.2308-0455

• 热点与综述 • 上一篇    下一篇

激光雷达SLAM算法综述

刘铭哲,徐光辉,唐堂,钱晓健,耿明   

  1. 陆军工程大学 通信工程学院,南京 210000
  • 出版日期:2024-01-01 发布日期:2024-01-01

Review of SLAM Based on Lidar

LIU Mingzhe, XU Guanghui, TANG Tang, QIAN Xiaojian, GENG Ming   

  1. College of Communications Engineering, Army Engineering University, Nanjing 210000, China
  • Online:2024-01-01 Published:2024-01-01

摘要: 即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里程计、后端优化、回环检测、地图构建模块的作用并总结所使用的算法;按由2D到3D,单传感器到多传感器融合的顺序,对经典的具有代表性的开源算法进行描述和梳理归纳;介绍常用的开源数据集,以及精度评价指标和测评工具;从深度学习、多传感器融合、多机协同和鲁棒性研究四个维度对激光雷达SLAM技术的发展趋势进行展望。

关键词: 即时定位与地图构建, 激光雷达, 惯性, 多传感器融合

Abstract: Simultaneous localization and mapping (SLAM) is a crucial technology for autonomous mobile robots and autonomous driving systems, with a laser scanner (also known as lidar) playing a vital role as a supporting sensor for SLAM algorithms. This article provides a comprehensive review of lidar-based SLAM algorithms. Firstly, it introduces the overall framework of lidar-based SLAM, providing detailed explanations of the functions of the front-end odometry, back-end optimization, loop closure detection, and map building modules, along with a summary of the algorithms used. Secondly, it presents descriptions and summaries of representative open-source algorithms in a sequential order of 2D to 3D and single-sensor to multi-sensor fusion. Additionally, it discusses commonly used open-source datasets, precision evaluation metrics, and evaluation tools. Lastly, it offers an outlook on the development trends of lidar-based SLAM technology from four dimensions: deep learning, multi-sensor fusion, multi-robot collaboration, and robustness research.

Key words: simultaneous localization and mapping, lidar, inertial, multi-sensor fusion