计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (9): 46-58.DOI: 10.3778/j.issn.1002-8331.2212-0008
姜秋香,郭伟鹏,王子龙,欧阳兴涛,隆睿睿
出版日期:
2023-05-01
发布日期:
2023-05-01
JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui
Online:
2023-05-01
Published:
2023-05-01
摘要: Python编程语言逐渐成为各领域中应用前景广阔的数据分析工具。然而,在水文水资源领域中利用Python语言进行科学分析的研究较少。介绍了常用于水文水资源领域的Python库;基于Python语言的主要研究方向和应用场景,从网络爬虫、数据分析、深度学习和Web开发4个方面综述了Python语言在水文水资源领域的主要研究内容;归纳了深度学习运用在水文水资源领域的常见算法;从自动预测、边缘计算、虚拟现实技术、强化学习和迁移学习等方面进行了展望,期望以Python语言实现的前沿计算机技术为动力,促进水文水资源领域的快速发展。
姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58.
JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources[J]. Computer Engineering and Applications, 2023, 59(9): 46-58.
[1] 明日科技.Python从入门到精通[M].北京:清华大学出版社,2018. Tomorrow’s Technology.Python goes from beginner to proficient[M].Beijing:Tsinghua University Press,2018. [2] 左其亭,张志卓,马军霞.水资源分类方案及学科体系[J].资源科学,2021,43(11):2215-2223. ZUO Q T,ZHANG Z Z,MA J X.Classification scheme of water resources and its disciplinary system[J].Resources Science,2021,43(11):2215-2223. [3] 水利部印发关于推进智慧水利建设的指导意见和实施方案[J].水利建设与管理,2022,42(1):5. Ministry of Water Resources issued guidance opinions and implementation plans on promoting intelligent water conservancy construction[J].Water Conservancy Construction and Management,2012,42(1):5. [4] 道格·赫尔曼.Python3 标准库[M].北京:机械工业出版社,2018. DOUG H.Python3 standard library[M].Beijing:China Machine Press,2018. [5] HARRIS C R,MILLMAN K J,VAN DER WALT S J,et al.Array programming with NumPy[J].Nature,2020,585(7825):357-362. [6] 李庆辉.深入浅出Pandas[M].北京:机械工业出版社,2021. LI Q H.Understanding Pandas in a simple way[M].Beijing:China Machine Press,2021. [7] HAO J G,HO T K.Machine learning made easy:a review of scikit learn package in Python programming language[J].Journal of Educational and Behavioral Statistics,2019,44(3):348-361. [8] HUNTER J D.Matplotlib:a 2D graphics environment[J].Computing in Science & Engineering,2020,9(3):90-95. [9] GRATTAROLA D,ALIPPI C.Graph neural networks in TensorFlow and keras with spektral[J].IEEE Computational Intelligence Magazine,2021,16(1):99-106. [10] 胡松涛.Python网络爬虫实战[M].北京:清华大学出版社,2017. HU S T.Python Web crawler practice[M].Beijing:Tsinghua University Press,2017. [11] MOHAN S,SOLANKI A K,TALUJA H K,et al.Predicting the impact of the third wave of COVID-19 in India using hybrid statistical machine learning models:a time series forecasting and sentiment analysis approach[J].Computers in Biology and Medicine,2022,144:105354. [12] VIRTANEN P,GOMMERS R,OLIPHANT T E,et al.Author correction:SciPy 1.0:fundamental algorithms for scientific computing in Python[J].Nature Methods,2020,17(3):352-352. [13] KRONHEIM B S,KUCHERA M P,PROSPER H B.TensorBNN:Bayesian inference for neural networks using TensorFlow[J].Computer Physics Communications,2022,270:108168. [14] CAMP C H.PyMCR:a python library for multivariatecurve resolution analysis with alternating regression(MCR-AR)[J].Journal of Research of the National Institute of Standards and Technology,2019,124:18. [15] 代红震.基于STAF和Python混合编程的自动化测试系统的研究和实现[D].南京:南京邮电大学,2015. DAI H Z.Research and implementation of automated test system based on STAF and Python mixed programming[D].Nanjing:Nanjing University of Posts and Telecommunications,2015. [16] 施林松.基于Selenium可视化的自动测试框架设计与实现[D].北京:中国科学院大学(中国科学院工程管理与信息技术学院),2017. SHI L S.Design and realization of automatic test framework based on selenium[D].Beijing:University of Chinese Academy of Sciences(School of Engineering Management and Information Technology,Chinese Academy of Sciences),2017. [17] GOODE K,HOFMANN H.Visual diagnostics of an explainer model:tools for the assessment of LIME explanations[J].Statistical Analysis and Data Mining:The ASA Data Science Journal,2021,14(2):185-200. [18] 王官云,任小强.基于Python语言的LTE业务差小区数据处理方法研究[J].工业控制计算机,2022,35(4):115-116. WANG G Y,REN X Q.Research on data processing method of LTE service cell based on Python language[J].Industrial Control Computer,2022,35(4):115-116. [19] 全力,杜景林,杨迎新.WRF模式气象数据可视化平台设计与实现[J].现代电子技术,2021,44(18):87-91. QUAN L,DU J L,YANG Y X.Design and implementation of meteorological data visualization platform in WRF model[J].Modern Electronics Technique,2021,44(18):87-91. [20] JANEZ D,TOMAZ C,ALES E,et al.Orange:data mining toolbox in Python[J].Journal of Machine Learning Research,2013,14(1):2349-2353. [21] PERSSON I,KHOJASTEH J.Python packages for exploratory factor analysis[J].Structural Equation Modeling:A Multidisciplinary Journal,2021,28(6):983-988. [22] 杜超.基于Python的聚焦爬虫的初步设计与实现[J].现代制造技术与装备,2020,56(12):30-31. DU C.Preliminary design and implementation of focused crawler based on Python[J].Modern Manufacturing Technology and Equipment,2020,56(12):30-31. [23] 余豪士,匡芳君.基于Python的反反爬虫技术分析与应用[J].智能计算机与应用,2018,8(4):112-115. YU H S,KUANG F J.Crawler and anti-anti-crawler technology based on Python[J].Intelligent Computer and Application,2018,8(4):112-115. [24] 蔡能健,刘东浩,邓辉,等.基于Web.py的MUSER软件系统界面实现[J].天文研究与技术,2017,14(2):229-235. CAI N J,LIU D H,DENG H,et al.The application method of Web.py in developing muser software system[J].Astronomical Research and Technology,2017,14(2):229-235. [25] 唐松,陈智铨.Python网络爬虫从入门到实践[M].北京:机械工业出版社,2017. TANG S,CHEN Z Q.Python Web crawler from introduction to practice[M].Beijing:China Machine Press,2017. [26] 吕鸿,吴泽宁,管新建,等.缺资料城市洪灾损失函数构建方法及应用[J].水科学进展,2021,32(5):707-716. LYU H,WU Z N,GUAN X J,et al.Construction method and applications of flood loss functions for cities lacking data[J].Advance in Water Science,2021,32(5):707-716. [27] WU Z,SHEN Y,WANG H,et al.Quantitative assessment of urban flood disaster vulnerability based on text data:case study in Zhengzhou[J].Water Supply,2020,20(2):408-415. [28] MA B,WU Z,WANG H,et al.Study on the classification of urban waterlogging rainstorms and rainfall thresholds in cities lacking actual data[J].Water,2020,12(12). [29] ZHANG J,ZOU T,LAI Y.Novel method for industrial sewage outfall detection:water pollution monitoring based on web crawler and remote sensing interpretation techniques[J].Journal of Cleaner Production,2021,312:127640. [30] GUAN G L,WANG Y G,YANG L,et al.water-quality assessment and pollution-risk early-warning system based on web crawler technology and LSTM[J].International Journal of Environmental Research and Public Health,2022,19(18). [31] 陶皖.云计算与大数据[M].西安:西安电子科技大学出版社,2017:44. TAO W.Cloud computing and big data[M].Xi’an:Xidian University Press,2017:44. [32] MCKINNEY W.Python for data analysis[M].Beijing:China Machine Press,2018. [33] 邱勇,毕怀斌,田宇心,等.污水处理厂进水数据特征识别与案例分析[J].环境科学学报,2021,42(4):44-52. QIU Y,BI H B,TIAN Y X,et al.Characterization model of influent data for wastewater treatment plants and its application in case studies[J].Acta Science Circumstantiae,2021,42(4):44-52. [34] ZHANG J,SHENG Y,CHEN W,et al.Design and analysis of a water quality monitoring data service platform[J].Computers,Materials & Continua,2021,66(1):389-405. [35] QIU Y G,XIE H,DUAN H T,et al.A novel spatiotemporal data model for river water quality visualization and analysis[J].IEEE Access,2019,7:155455-155461. [36] DENG W,WANG G.A novel water quality data analysis framework based on time-series data mining[J].Journal of Environmental Management,2017,196:365-375. [37] MANJAKKAL L,MITRA S,PETILLOT Y R,et al.Connected sensors,innovative sensor deployment,and intelligent data analysis for online water quality monitoring[J].IEEE Internet of Things Journal,2021,8(18):13805-13824. [38] KARHADE A V,SCHWAB J H.Introduction to the spine journal special issue on artificial intelligence and machine learning[J].The Spine Journal,2021,21(10):1601-1603. [39] 冯平,张立斌,李建柱,等.目标函数对水文模型参数敏感性和径流模拟不确定性影响分析[J/OL].水资源保护:1-15[2022-11-08].https://kns.cnki.net/kcms/detail/32.1356.TV.20220519.1658.010.html. FENG P,ZHANG L B,LI J Z,et al.The influence of objective function on the sensitivity of hydrological model parameters and the uncertainty of runoff simulation[J/OL].Water Resources Protection:1-15[2022-11-08].https://kns.cnki.net/kcms/detail/32.1356.TV.20220519.1658. 010.html. [40] 周志华.机器学习及其应用[M].北京:清华大学出版社,2007. ZHOU Z H.Machine learning and its applications[M].Beijing:Tsinghua University Press,2007. [41] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [42] MD Z A,TAREK M T,CHRIS Y,et al.A state-of-the-art survey on deep learning theory and architectures[J].Electronics,2019,8(3):292. [43] GOODFELLOW I BENGIO Y COURVILLE A.Deep learning[M].Cambridge,MA:MIT Press,2016. [44] PEREIRA FILHO A J,DOS SANTOS C C.Modeling a densely urbanized watershed with an artificial neural network,weather radar and telemetric data[J].Journal of Hydrology,2006,317(1/2):31-48. [45] KOURGIALAS N N,DOKOU Z,KARATZAS G P.Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios:the example of a small Mediterranean agro-watershed[J].Journal of Environmental Management,2015,154:86-101. [46] SULAIMAN M,EL-SHAFIE A,KARIM O,et al.Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network[J].Water Resources Management,2011,25(10):2525-2541. [47] SANKARANARAYANAN S,PRABHAKAR M,SATISH S,et al.Flood prediction based on weather parameters using deep learning[J].Journal of Water and Climate Change,2020,11(4):1766-1783. [48] CAI Y,ZHENG W,ZHANG X,et al.Research on soil moisture prediction model based on deep learning[J].Plos One,2019,14(4):e0214508. [49] KARPATNE A,ATLURI G,FAGHMOUS J H,et al.Theory-guided data science:a new paradigm for scientific discovery from data[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(10):2318-2331. [50] WANG N,ZHANG D,CHANG H,et al.Deep learning of subsurface flow via theory-guided neural network[J].Journal of Hydrology,2020,584:124700. [51] LE CUN Y.Deep learning[J].Nature,2015,521(7553):436-444. [52] AMIT S N K B,SHIRAISHI S,INOSHITA T,et al.Analysis of satellite images for disaster detection[C]//IEEE International Geoscience and Remote Sensing Symposium,2016:5189-5192. [53] SONG C M.Application of convolution neural networks and hydrological images for the estimation of pollutant loads in ungauged watersheds[J].Water,2021,13(2):239. [54] 王立,吴羽溪,王小艺,等.基于遥感图像3D-CNN及氮磷循环的水华预测[J].控制理论与应用,2021,38(10):1683-1691. WANG L,WU Y X,WANG X Y,et al.Prediction of water bloom based on remote sensing image 3D-CNN and nitrogen and phosphours cycles[J].Control Theory and Applications,2021,38(10):1683-1691. [55] VOEGTLIN T,DOMINEY P F.Linear recursive distributed representations[J].Neural Networks,2005,18(7):878-895. [56] LI L,JIANG P,XU H,et al.Water quality prediction based on recurrent neural network and improved evidence theory:a case study of Qiantang River,China[J].Environmental Science and Pollution Research,2019,26(19):19879-19896. [57] WEI C,CHENG J.Nearshore two-step typhoon wind-wave prediction using deep recurrent neural networks[J].Journal of Hydroinformatics,2020,22(2):346-367. [58] CHIANG Y M,HAO R N,LI N N,et al.Water level forecasting by static and dynamic neural networks[J].Journal of Tianjin University,2017,50(3):245-254. [59] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [60] OLAH C.Understanding LSTM networks[EB/OL].(2015-08).https://colah.github.io/posts/2015-08-Understanding-LSTMs. [61] KRATZERT F,KLOTZ D,BRENNER C,et al.Rainfall-runoff modelling using long short-term memory(LSTM) networks[J].Hydrology and Earth System Sciences,2018,22(11):6005-6022. [62] OUMA Y O,CHERUYOT R,WACHERA A N,et al.Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data:case study of Nzoia hydrologic basin[J].Complex & Intelligent Systems,2021,8(1):213-236. [63] FANG K,SHEN C,KIFER D,et al.Prolongation of SMAP to spatiotemporally seamless coverage of continental U.S. using a deep learning neural network[J].Geophysical Research Letters,2017,44(21):11030-11039. [64] JEONG J,PARK E,CHEN H,et al.Estimation of groundwater level based on the robust training of recurrent neural networks using corrupted data[J].Journal of Hydrology,2020,582:124512. [65] 刘亚新,樊启祥,尚毅梓,等.基于LSTM神经网络的水电站短期水位预测方法[J].水利水电科技进展,2019,39(2):56-60. LIU Y X,FAN Q X,SHANG Y Z,et al.Short-term water level prediction method of hydropower station based on LSTM neural network[J].Advances in Science and Technology of Water Resources,2019,39(2):56-60. [66] MU L,ZHENG F F,TAO R L,et al.Hourly and daily urban water demand predictions using a long short-term memory based model[J].Journal of Water Resources Planning and Management,2020,146(9):05020017. [67] KUEHNERT C,GONUGUNTLA N M,KRIEG H,et al.Application of LSTM networks for water demand prediction in optimal pump control[J].Water,2021,13(5):644. [68] ZANFEI A,BRENTAN B M.A short-term water demand forecasting model using multivariate long short-term memory with meteorological data[J].Journal of Hydroinformatics,2022,24(5):1053-1065. [69] LIU P,WANG J,SANGAIAH A,et al.Analysis and prediction of water quality using LSTM deep neural networks in IoT environment[J].Sustainability,2019,11(7):2058. [70] BAEK S,PYO J,CHUN J A.Prediction of water level and water quality using a CNN-LSTM combined deep learning approach[J].Water,2020,12(12):1-13. [71] ZOU Q,XIONG Q,LI Q,et al.A water quality prediction method based on the multi-time scale bidirectional long short-term memory network[J].Environmental Science and Pollution Research International,2020,27(14):16853-16864. [72] YU Z,YANG K,LUO Y,et al.Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network[J].Journal of Hydrology,2020,582:124488. [73] CHO K,MERRIENBOER B,BAHDANAU D.On the properties of neural machine translation:encoder-decoder approaches[J].arXiv:1409.1259,2014. [74] ZHANG D,LINDHOLM G,RATNAWEERA H.Use long short-term memory to enhance internet of things for combined sewer overflow monitoring[J].Journal of Hydrology,2018,556:409-418. [75] YU J X,ZHANG X,XU L L,et al.A hybrid CNN-GRU model for predicting soil moisture in maize root zone[J].Agricultural Water Management,2021,245:106649. [76] KILINC H C,YURTSEVER A.Short-term streamflow forecasting using hybrid deep learning model based on grey wolf algorithm for hydrological time series[J].Sustainability,2022,14(6). [77] HINTON G E.Training products of experts by minimizing contrastive divergence[J].Neural Computation,2002,14(8):1771-1800. [78] UPADHYA V,SASTRY P S.An overview of restricted boltzmann machines[J].Journal of the Indian Institute of Science,2019,99(2):225-236. [79] LE ROUX N,BENJIO Y.Representational power of restricted Boltzmann machines and deep belief networks[J].Neural Computation,2008,20(6):1631-1649. [80] NIU G O,YI X H,CHEN C,et al.A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment[J].Journal of Cleaner Production,2020,265:121787. [81] SUNG J H,RYU Y,CHUNG E.Estimation of water-use rates based on hydro-meteorological variables using deep belief network[J].Water,2020,12(10). [82] CHEN Y,LIU G D,HUANG X H,et al.Groundwater remediation design underpinned by coupling evolution algorithm with deep belief network surrogate[J].Water Resources Management,2022,36(7):2223-2239. [83] 雷伟军,高寅生,冯永亮,等.网页设计与制作[M].北京:人民邮电出版社,2017:262. LEI W J,GAO Y S,FENG Y L,et al.Web design and production[M].Beijing:Posts and Telecommunications Press,2017:262. [84] TOMLINSON J E,ARNOTT J H,HAROU J J.A water resource simulator in Python[J].Environmental Modelling & Software,2020,126:104635. [85] GRASSO S,CLAPS P,GANORA D,et al.A web‐based open‐source geoinformation tool for regional water resources assessment[J].Water Resources Management,2021,35(2):675-687. [86] EVANS S W,JONES N L,WILLIAMS G P,et al.Groundwater level mapping tool:an open source web application for assessing groundwater sustainability[J].Environmental Modelling & Software,2020,131:104782. [87] BUSTAMANTE G R,NELSON E J,AMES D P,et al.Water data explorer:an open-source web application and Python library for water resources data discovery[J].Water,2021,13(13):1850. [88] PABLO B D A,KLEBER I S D S,PEDRO L B C.A web-based tool for synthesis assessments of the impacts of climate change on water resources[J].Environmental Modelling and Software,2020,133. [89] CHEN J S,RAN X K.Deep learning with edge computing:a review[J].Proceedings of the IEEE,2019,107(8):1655-1674. [90] 刘洋.基于边缘计算的数据获取与处理系统设计与实现[D].北京:北京工业大学,2018. LIU Y.Design and implementation of data acquisition and processing system based on edge computing[D].Beijing:Beijing University of Technology,2018. [91] ZHOU J,CHEN Y,XIAO F,et al.Water quality prediction method based on transfer learning and echo state network[J].Journal of Circuits Systems and Computers,2021,30(14):2150262. |
[1] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[2] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[3] | 王昌海, 梁辉, 王博, 崔晓旭. 基于指数成分股关联的图卷积指数走势预测[J]. 计算机工程与应用, 2023, 59(9): 319-328. |
[4] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[5] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[6] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[7] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[8] | 张伟, 朱汉卿, 高志刚. 金融文本特征挖掘及动态融合因子策略研究[J]. 计算机工程与应用, 2023, 59(8): 297-305. |
[9] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[10] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[11] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[12] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[13] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[14] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
[15] | 蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||