计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (9): 27-45.DOI: 10.3778/j.issn.1002-8331.2209-0305
陈吉尚,哈里旦木·阿布都克里木,梁蕴泽,阿布都克力木·阿布力孜,米克拉依·艾山,郭文强
出版日期:
2023-05-01
发布日期:
2023-05-01
CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang
Online:
2023-05-01
Published:
2023-05-01
摘要: 符号音乐生成是音乐信息检索领域中的一个重要任务。对基于深度学习的符号音乐生成进行了全面总结,并对已有方法进行分类、分析和比较。详细介绍了符号音乐生成研究现状及其任务。阐述符号音乐表征及编码方法,并重点对基于深度学习的模型进行归纳比较与分析,根据不同的基础架构分为三类。阐述并归纳符号音乐生成领域的评价标准及数据集等资源,对代表性模型的性能进行评估对比。指出该领域目前存在的问题并提出相应的展望。
陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45.
CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation[J]. Computer Engineering and Applications, 2023, 59(9): 27-45.
[1] FANG Y,XU Y,LI H,et al.Writing in the air:recognize letters using deep learning through WiFi signals[C]//2020 6th International Conference on Big Data Computing and Communications(BIGCOM),2020:8-14. [2] CHEN S.Exploration of artistic creation of Chinese ink style painting based on deep learning framework and convolutional neural network model[J].Soft Computing,2020,24(11):7873-7884. [3] YANG Y H.Automatic music composition with transformers[C]//Proceedings of the 2021 International Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia,2021. [4] PRASHANT-KRISHNAN V,RAJARAJESWARI S,KRISHN-AMOHAN V,et al.Music generation using deep learning techniques[J].Journal of Computational and Theoretical Nanoscience,2020,17(9/10):3983-3987. [5] DONAHUE C,MAO H H,LI Y E,et al.LakhNE-S:improving multi-instrumental music generation with cross-domain pre-training[C]//International Society for Music Information Retrieval,2019:685-692. [6] SHENG Z,SONG K,TAN X,et al.Songmass:automatic song writing with pre-training and alignment constraint[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2021:13798-13805. [7] BRUNNER G,KONRAD A,WANG Y,et al.MIDI-VAE:modeling dynamics and instrumentation of music with applications to style transfer[C]//International Society for Music Information Retrieval,2018:747-754. [8] PATI A,LERCH A,HADJERES G.Learning to traverse latent spaces for musical score inpainting[C]//International Society for Music Information Retrieval,2019:343-351. [9] BRIOT J P,PACHET F.Deep learning for music generation:challenges and directions[J].Neural Computing and Applications,2020,32(4):981-993. [10] HERNANDEZ-OLIVAN C,BELTRAN J R.Music composition with deep learning:a review[J].arXiv:2108. 12290,2021. [11] PINKERTON R C.Information theory and melody[J].Scientific American,1956,194(2):77-87. [12] HILLER L A,ISAACSON L M.Experimental music;composition with an electronic computer[M].[S.l.]:Greenwood Publishing Group Inc,1979:197. [13] PUTNAM J.A grammar-based genetic programming technique applied to music generation[C]//Evolutionary Programming,1996:363-368. [14] VAN DER MERWE A,SCHULZE W.Music generation with Markov models[J].IEEE Multimedia,2010,18(3):78-85. [15] SHAO X,XU C,KANKANHALLI M S.Unsupervised classification of music genre using hidden Markov model[C]//2004 IEEE International Conference on Multimedia and Expo(ICME),2004:2023-2026. [16] MOZER M C.Neural network music composition by prediction:exploring the benefits of psychoacoustic constraints and multi-scale processing[J].Connection Science,1994,6(2/3):247-280. [17] HORI T,WADA S,TAI H,et al.Automatic music score recognition/play system based on decision based neural network[C]//1999 IEEE Third Workshop on Multimedia Signal Processing,1999:183-184. [18] SIGTIA S,DIXON S.Improved music feature learning with deep neural networks[C]//2014 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2014:6959-6963. [19] TODD P M.A connectionist approach to algorithmic composition[J].Computer Music Journal,1989,13(4):27-43. [20] ELMAN J L.Finding structure in time[J].Cognitive Science,1990,14(2):179-211. [21] LATTNER S,GRACHTEN M,AGRES K,et al.Probabilistic segmentation of musical sequences using restricted Boltzmann machines[C]//International Conference on Mathematics and Computation in Music.Cham:Springer,2015:323-334. [22] CHEN K,ZHANG W,DUBNOV S,et al.The effect of explicit structure encoding of deep neural networks for symbolic music generation[C]//2019 International Workshop on Multilayer Music Representation and Processing(MMRP),2019:77-84. [23] LO M Y,LUCAS S M.Evolving musical sequences with n-gram based trainable fitness functions[C]//2006 IEEE International Conference on Evolutionary Computation,2006:601-608. [24] GOEL K,VOHRA R,SAHOO J K.Polyphonic music generation by modeling temporal dependencies using a RNNDBN[C]//International Conference on Artificial Neural Networks.Cham:Springer,2014:217-224. [25] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [26] BRETAN M,WEINBERG G,HECK L P.A unit selection methodology for music generation using deep neural networks[C]//Proceedings of the Eighth International Conference on Computational Creativity,2017:19-23. [27] KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114v9,2014. [28] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:30. [29] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems,2014:27. [30] ROBERTS A,ENGEL J,RAFFEL C,et al.A hierarchical latent vector model for learning long-term structure in music[C]//International Conference on Machine Learning,2018:4364-4373. [31] JIANG J,XIA G G,CARLTON D B,et al.Transformer VAE:a hierarchical model for structureaware and interpretable music representation learning[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2020:516-520. [32] WANG Z,ZHANG Y,ZHANG Y,et al.Pianotree VAE:structured representation learning for poly-phonic music[J].arXiv:2008.07118,2020. [33] ECK D,SCHMIDHUBER J.A first look at music composition using LSTM recurrent neural networks[J].Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale,2002,103:48. [34] LIM H,RHYU S,LEE K.Chord generation from symbolic melody using blstm networks[C]//International Society for Music Information Retrieval,2017:621-627. [35] YANG W,SUN P,ZHANG Y,et al.Clstms:a combination of two LSTM models to generate chords accompaniment for symbolic melody[C]//2019 International Conference on High Performance Big Data and Intelligent Systems(HPBD&IS),2019:176-180. [36] CHEN Z,YU J M.GCA:a chord music generation algorithm based on double-layer LSTM[C]//2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication(CTISC),2021:57-61. [37] WU S,YANG Y,WANG Z,et al.Melody harmonization with controllable harmonic rhythm[J].arXiv:2112.11122,2021. [38] GATYS L A,ECKER A S,BETHGE M.Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2414-2423. [39] YU K,XU W,GONG Y.Transfer learning methods and systems for feed-forward visual recognition systems:U.S.Patent 8,345,962[P].2013-01-01. [40] HUNG H T,WANG C Y,YANG Y H,et al.Improving automatic jazz melody generation by transfer learning techniques[C]//2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference(APSIPA ASC),2019:339-346. [41] MEREDITH D.Method of computing the pitch names of notes in MIDI-like music representations:U.S.Patent Application 10/821,962[P].2004-11-04. [42] BOULANGER-LEWANDOWSKI N,BENGIO Y,VINCENT P.Modeling temporal dependencies in high dimensional sequences:application to polyphonic music generation and transcription[C]//Proceedings of the 29th International Coference on International Conference on Machine Learning,June 2012:1881-1888. [43] BAGGI D,HAUS G.IEEE 1599:music encoding and interaction[J].Computer,2009,42(3):84-87. [44] KEPPER J.A data model for digital musicology and its current state-the music encoding initiative[C]//Digital Humanities,2010:184 [45] THAKKER U,DASIKA G,BEU J,et al.Measuring scheduling efficiency of rnns for NLP applications[J].arXiv:1904.03302,2019. [46] SIGTIA S,BENETOS E,CHERLA S,et al.An RNN-based music language model for improving automatic music transcription[C]//International Society for Music Information Retrieval,2014:53-58. [47] SUBAKAN Y C,SMARAGDIS P.Diagonal RNNs in symbolic music modeling[C]//2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics(WASPAA),2017:354-358. [48] STURM B,SANTOS J F,BEN-TAL O,et al.Music transcription modelling and composition using deep learning[C]//1st Conference on Computer Simulation of Musical Creativity,2016. [49] LIANG F T,GOTHAM M,JOHNSON M,et al.Automatic stylistic composition of bach chorales with deep LSTM[C]//International Society for Music Information Retrieval,2017:449-456. [50] MAO H H,SHIN T,COTTRELL G.DeepJ:style specific music generation[C]//2018 IEEE 12th International Conference on Semantic Computing(ICSC),2018:377-382. [51] CHEN K,XIA G,DUBNOV S.Continuous melody generation via disentangled short-term representations and structural conditions[C]//2020 IEEE 14th International Conference on Semantic Computing(ICSC),2020:128-135. [52] ZHAO T,ZHAO R,ESKENAZI M.Learning discourse-level diversity for neural dialog models using conditional variational autoencoders[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2017:654-664. [53] AHMED K,KESKAR N S,SOCHER R.Weighted transformer network for machine translation[J].arXiv:1711. 02132,2017. [54] LI Y,FENG R,REHG I,et al.Transformer-based neural text generation with syntactic guidance[J].arXiv:2010. 01737,2020. [55] HUANG C Z A,VASWANI A,USZKOREIT J,et al.Music transformer[C]//International Conference on Learning Representations,2018. [56] SHAW P,USZKOREIT J,VASWANI A.Self-attention with relative position representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies(Volume 2:Short Papers),2018:464-468. [57] DAI Z,YANG Z,YANG Y,et al.Transformer-xl:attentive language models beyond a fixed-length context[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:2978-2988. [58] CHILD R,GRAY S,RADFORD A,et al.Generating long sequences with sparse transformers[J].arXiv:1904. 10509,2019. [59] CHOI K,HAWTHORNE C,SIMON I,et al.Encoding musical style with transformer autoencoders[C]//International Conference on Machine Learning,2020:1899-1908. [60] VON RüTTE D,BIGGIO L,KILCHER Y,et al.FIG-ARO:generating symbolic music with finegrained artistic control[J].arXiv:2201.10936,2022. [61] HUANG Y S,YANG Y H.Pop music transformer:beat-based modeling and generation of expressive pop piano compositions[C]//Proceedings of the 28th ACM International Conference on Multimedia,2020:1180-1188. [62] HSIAO W Y,LIU J Y,YEH Y C,et al.Compound word transformer:learning to compose full song music over dynamic directed hypergraphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2021:178-186. [63] KATHAROPOULOS A,VYAS A,PAPPAS N,et al.Transformers are RNNS:fast autoregressive transformers with linear attention[C]//International Conference on Machine Learning,2020:5156-5165. [64] ENS J,PASQUIER P.Mmm:exploring conditional multi-track music generation with the transformer[J].arXiv:2008.06048,2020. [65] DONG H W,CHEN K,DUBNOV S,et al.Multitrack music transformer:learning long-term dependencies in music with diverse instruments[J].arXiv:2207.06983,2022. [66] WU J,LIU X,HU X,et al.PopMNet:generating structured pop music melodies using neural networks[J].Artificial Intelligence,2020,286:103303. [67] ZOU Y,ZOU P,ZHAO Y,et al.MELONS:generating melody with long-term structure using transformers and structure graph[C]//2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2022:191-195. [68] NASH J.Non-cooperative games[J].Annals of Mathematics,1951:286-295. [69] HUANG H,YU P S,WANG C.An introduction to image synthesis with generative adversarial nets[J].arXiv:1803. 04469,2018. [70] YU L,ZHANG W,WANG J,et al.Seqgan:sequence generative adversarial nets with policy gradient[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2017. [71] MOGREN O.C-RNN-GAN:continuous recurent neural networks with adversarial training[C]//Conference and Workshop on Neural Information Processing Systems,2018. [72] TRIEU N,KELLER R M.JazzGAN:improvising with generative adversarial networks[C]//6th International Workshop on Musical Metacreation,2018. [73] OORD A,DIELEMAN S,ZEN H,et al.Wavenet:a generative model for raw audio[C]//The 9th ISCA Speech Synthesis Workshop,Sunnyvale,CA,USA,13-15 September,2016:125. [74] YANG L C,CHOU S Y,YANG Y H.MidiNet:a convolutional generative adversarial network for symbolic-domain music generation[C]//International Society for Music Information Retrieval,2017:324-331. [75] WAITE E.Generating long-term structure in songs and stories[J].Web Blog Post,2016,15(4). [76] DONG H W,HSIAO W Y,YANG L C,et al.Musegan:multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [77] 汪涛,靳聪,李小兵,等.基于Transformer的多轨音乐生成对抗网络[J].计算机应用,2021,41(12):3585-3589. WANG T,JIN C,LI X B,et al.Multi-track music generative adversarial network based on Transformer[J].Journal of Computer Applications,2021,41(12):3585-3589. [78] 白勇,帖云,靳聪,等.基于强化学习的智能作曲研究[J].人工智能,2020(2):47-56. BAI Y,TIE Y,JIN C,et al.Research on intelligent composition based on reinforcement learning[J].Artificial Intelligence,2020(2):47-56. [79] GUL O,SCHLAGER C,TODD G.MuML:musical meta-learning[EB/OL].(2021-10-01)[2023-04-11].https://vdocuments.mx/muml-musical-meta-learning-stanford-university.html?page=1. [80] KOTECHA N.Bach2bach:generating music using a deep reinforcement learning approach[J].arXiv:1812.01060,2018. [81] XUE L,SONG K,WU D,et al.DeepRapper:neural rap generation with rhyme and rhythm modeling[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers),2021:69-81. [82] LIU J,DONG Y,CHENG Z,et al.Symphony generation with permutation invariant language model[J].arXiv:2205.05448,2022. [83] SIMON I,OORE S.Performance RNN:generating music with expressive timing and dynamics[EB/OL].(2017-07-29).https://magenta.tensorflow.org/performance-rnn. [84] HADJERES G,PACHET F,NIELSEN F.Deepbach:a steerable model for bach chorales generation[C]//International Conference on Machine Learning,2017:1362-1371. [85] DONG H,YANG Y.Convolutional generative adversarial networks with binary neurons for polyphonic music generation[C]//Proceedings of the 19th International Society for Music Information Retrieval Conference, 2018:190-196. [86] PAYNE C.Musenet[EB/OL].(2019-08-25).https://openai.com/research/musenet. [87] HADJERES G,NIELSEN F.Anticipation-RNN:enforcing unary constraints in sequence generation,with application to interactive music generation[J/OL].Neural Computing & Applications,2020:995?1005[2022?09?08].https://doi.org/10.1007/s00521-018-3868-4. [88] REN Y,HE J,TAN X,et al.Popmag:pop music accompaniment generation[C/OL]//Proceedings of the 28th ACM International Conference on Multimedia,2020:1198-1206[2022-09-08].https://doi.org/10.1145/3394171.3413721. [89] WU S L,YANG Y H.MuseMorphose:full-song and fine-grained piano music style transfer with one Transformer VAE[J].arXiv:2105.04090,2021. [90] SHIH Y J,WU S L,ZALKOW F,et al.Theme transformer:symbolic music generation with theme-conditioned transformer[J].IEEE Transactions on Multimedia,2022. [91] GU Y,YIN X,RAO Y,et al.Bytesing:a Chinese singing voice synthesis system using duration allocated encoder-decoder acoustic models and wavernn vocoders[C]//2021 12th International Symposium on Chinese Spoken Language Processing(ISCSLP),2021:1-5. [92] YANG L C,LERCH A.On the evaluation of generative models in music[J].Neural Computing and Applications,2020,32(9):4773-4784. [93] BONNIN G,JANNACH D.Automated generation of music playlists:survey and experiments[J].ACM Computing Surveys(CSUR),2014,47(2):1-35. [94] CAMPBELL M.Objective evaluation of musical instrument quality:a grand challenge in musical acoustics[J].The Journal of the Acoustical Society of America,2013,19(1):032003. [95] GODWIN T,RIZOS G,BAIRD A,et al.Evaluating deep music generation methods using data augmentation[C]//2021 IEEE 23rd International Workshop on Multimedia Signal Processing(MMSP),2021:1-6. [96] GARCIA-VALENCIA S,BETANCOURT A,LALINDE-PULIDO J G.A framework to compare music generative models using automatic evaluation metrics extended to rhythm[J].arXiv:2101.07669,2021. [97] RIBEIRO F,FLORêNCIO D,ZHANG C,et al.Crowdmos:an approach for crowdsourcing mean opinion score studies[C]//2011 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2011:2416-2419. [98] TURING A M,HAUGELAND J.Computing machinery and intelligence[J].The Turing Test:Verbal Behavior as the Hallmark of Intelligence,1950:29-56. [99] SCHOFIELD J.Computer chatbot “Eugene Goostman” passes the turing test[EB/OL].[2014-06].https://www.zdnet.com/article/computer-chatbot-eugene-goostmanpasses-the-turing-test. [100] KONG M,HUANG L.Bach style music authoring system based on deep learning[J].arXiv:2110.02640,2021. [101] CíFKA O,?IM?EKLI U,RICHARD G.Supervised symbolic music style translation using synthetic data[C]//International Society for Music Information Retrieval,2019:588-595. [102] LIU I,RAMAKRISHNAN B.Bach in 2014:music composition with recurrent neural network[J].arXiv:1412.3191,2014. [103] ARIZA C.The interrogator as critic:the turing test and the evaluation of generative music systems[J].Computer Music Journal,2009,33(2):48-70. [104] BECH S,ZACHAROV N.Perceptual audio evaluation-theory,method and application[M].[S.l.]:John Wiley & Sons,2007. [105] HERNANDEZ-OLIVAN C,PUYUELO J A,BELTRAN J R.Subjective evaluation of deep learning models for symbolic music composition[J].arXiv:2203.14641,2022. [106] JELINEK F,MERCER R L,BAHL L R,et al.Perplexity—a measure of the difficulty of speech recognition tasks[J].The Journal of the Acoustical Society of America,1977,62(S1):63. [107] AZZOPARDI L,GIROLAMI M,VAN RISJBERGEN K.Investigating the relationship between language model perplexity and IR precision-recall measures[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval,2003:369-370. [108] PAPINENI K,ROUKOS S,WARD T,et al.Bleu:a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,2002:311-318. [109] YU D,YAO K,SU H,et al.KL-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing,2013:7893-7897. [110] SONG Q,SUN Q,GUO D,et al.SinTra:learning an inspiration model from a single multi-track music segment[C]//International Society for Music Information Retrieval,2021:665-672. [111] BRESIN R,FRIBERG A.Emotion rendering in music:range and characteristic values of seven musical variables[J].Cortex,2011,47(9):1068-1081. [112] MOGREN O.Continuous recurrent neural networks with adversarial training[J].arXiv:1611.09904,2016. [113] CLARKE E F.Rhythm and timing in music[M]//The psychology of music.[S.l.]:Academic Press,1999:473-500. [114] HONING H.9 structure and interpretation of rhythm in music[J].The Psychology of Music,2012:369. [115] DONG H W,CHEN K,MCAULEY J,et al.MusPy:a toolkit for symbolic music generation[C]//International Society for Music Information Retrieval,2020:101-108. [116] BURNS L.Analytic methodologies for rock music[J].Expression in Pop-Rock Music:Critical and Analytical Essays,2008:63-92. [117] TYMOCZKO D.The geometry of musical chords[J].Science,2006,313(5783):72-74. [118] YEH Y C,HSIAO W Y,FUKAYAMA S,et al.Automatic melody harmonization with triad chords:a comparative study[J].Journal of New Music Research,2021,50(1):37-51. [119] UNEHARA M,ONISAWA T.Music composition system based on subjective evaluation[C]//2003 IEEE Intrnational Conference on Systems,Man and Cybernetics,2003:980-986. [120] ZHU H,NIU Y,FU D,et al.MusicBERT:a self-supervised learning of music representation[C]//Proceedings of the 29th ACM International Conference on Multimedia,2021:3955-3963. [121] WANG Z,XIA G.MuseBERT:pre-training music representation for music understanding and controllable generation[C]//International Society for Music Information Retrieval,2021:722-729. [122] SONG K,TAN X,QIN T,et al.MASS:masked sequence to sequence pre-training for language generation[C]//International Conference on Machine Learning,2019:5926-5936. [123] RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of Machine Learning Research,2020,21(140):1-67. [124] LEWIS M,LIU Y,GOYAL N,et al.BART:denoising sequence-to-sequence pre-training for natural language generation,translation,and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:7871-7880. [125] JEONG D,KWON T,KIM Y,et al.Graph neural network for music score data and modeling expressive piano performance[C]//International Conference on Machine Learning,2019:3060-3070. [126] HAWTHORNE C,JAEGLE A,CANGEA C S,et al.General-purpose,long-context autoregressive modeling with perceiver AR[J].arXiv:2202.07765,2022. |
[1] | 苟园旻, 闫建伟, 张富贵, 孙成宇, 徐勇. 水果采摘机器人视觉系统与机械手研究进展[J]. 计算机工程与应用, 2023, 59(9): 13-26. |
[2] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[3] | 孙爱晶, 王国庆. 邻居关系感知的图卷积网络推荐模型[J]. 计算机工程与应用, 2023, 59(9): 112-122. |
[4] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[5] | 李文举, 储王慧, 崔柳, 苏攀, 张干. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237-244. |
[6] | 王昌海, 梁辉, 王博, 崔晓旭. 基于指数成分股关联的图卷积指数走势预测[J]. 计算机工程与应用, 2023, 59(9): 319-328. |
[7] | 张婷, 张兴忠, 王慧民, 杨罡, 王大伟. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336. |
[8] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[9] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[10] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[11] | 杨崇洛, 生龙, 魏忠诚, 王巍. 新冠文本实体关系抽取及数据集构建方法研究[J]. 计算机工程与应用, 2023, 59(8): 97-104. |
[12] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[13] | 陆林, 季繁繁, 袁晓彤. 随机初始化神经网络剪枝的稀疏二值规划方法[J]. 计算机工程与应用, 2023, 59(8): 138-147. |
[14] | 兰红, 陈浩, 张蒲芬. 集图卷积和三维方向卷积的点云分类分割模型[J]. 计算机工程与应用, 2023, 59(8): 182-191. |
[15] | 崔少国, 独潇, 杨泽田. 多注意力机制融合低高阶特征的神经推荐算法[J]. 计算机工程与应用, 2023, 59(8): 192-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||