计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (9): 262-271.DOI: 10.3778/j.issn.1002-8331.2205-0271
宋春雷,赵旭俊,高亚星,晋广印
SONG Chunlei, ZHAO Xujun, GAO Yaxing, JIN Guangyin
摘要: 时间序列的有监督异常检测方法通常依赖于数据的标签,不仅会消耗大量时间进行数据标注,而且难以适用于无法给定标签的数据集。为解决异常序列检测中的标注问题,提出一种采用分段特征表示的异常序列检测方法。该方法采用分段聚合思想对时间序列进行标准化计算,并得到时序数据的特征表示,可提高无标签时间序列异常检测的可靠性。将表示后的特征划分为异常序列相关特征和无关特征,剪枝异常序列无关特征,可减少这些特征对检测结果的不利影响。为有效量化不同序列之间的差异性,提出一种面向时间权重分析的时间序列相似性度量方法,并构建时间序列的相似度矩阵,用于计算序列之间的相似度,可适用于无标签的时间序列中。在此基础上,根据相似度矩阵来计算每个子序列的异常分数,将其用于异常子序列的判定。通过合成数据集和真实数据集的实验对比表明:该方法节省了计算开销,提高了算法运行的时间效率和异常序列检测的准确率。