计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (11): 125-132.DOI: 10.3778/j.issn.1002-8331.2108-0314
张忠林,张艳
ZHANG Zhonglin, ZHANG Yan
摘要: 为了提高时序预测精度,提出了一种改进萤火虫算法(firefly algorithm,FA)优化LSTM的时序预测模型(GAFA-LSTM)。针对FA因种群多样性弥散陷入局部最优,影响寻优效果的问题,提出了种群多样性增加机制。FA在完成初始化后加入种群多样性的计算;在满足多样性增加机制的条件下,引入自适应多样性增加机制,有效平衡进化过程中对种群多样性的需求;在迭代后期加入自适应游动参数来避免局部震荡。将改进后的FA用于LSTM模型输入参数的优化,以提高LSTM模型输入参数的准确性。实验部分对改进FA进行了改进效果测试,对GAFA-LSTM模型进行了模型验证。结果表明改进FA具有较好的寻优效果,GAFA-LSTM预测模型较其他预测模型拟合程度与预测精度都有不同程度的提高。