计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (7): 64-79.DOI: 10.3778/j.issn.1002-8331.2205-0409
邱云飞,邢浩然,李刚
出版日期:
2023-04-01
发布日期:
2023-04-01
QIU Yunfei, XING Haoran, LI Gang
Online:
2023-04-01
Published:
2023-04-01
摘要: 目前矿井建设工作中积累了海量数据,运用知识图谱技术可以挖掘这些动态数据间的复杂联系,为管理矿井数据、实现智慧化矿井建设等研究提供有效帮助。通过文献调研分析了矿井建设知识图谱的构建方法及数据特征,为知识图谱在矿井建设领域的落地应用提供了理论支撑;针对矿井建设领域的非结构化数据,系统地总结了知识抽取、知识融合、知识推理等构造知识图谱核心技术的原理与改进方法;最后分析了未来在矿井建设领域应用知识图谱的落地场景及发展趋势。
邱云飞, 邢浩然, 李刚. 矿井建设知识图谱构建研究综述[J]. 计算机工程与应用, 2023, 59(7): 64-79.
QIU Yunfei, XING Haoran, LI Gang. Summary of Research on Construction of Knowledge Graph for Mine Construction[J]. Computer Engineering and Applications, 2023, 59(7): 64-79.
[1] 王萌,王昊奋,李博涵,等.新一代知识图谱关键技术综述[J].计算机研究与发展,2022,59(9):1947-1965. WANG M,WANG H F,LI B H,et al.Survey on key technologies of new generation knowledge graph[J].Journal of Computer Research and Development,2022,59(9):1947-1965. [2] GE Y,MA T,PEI T,et al.Progress of big geodata[J].Science Bulletin,2022,67(17):1743-1744. [3] 黄中伟,李国富,杨睿月.我国煤层气开发技术现状与发展趋势[J].煤炭学报,2022,47(9):3212-3238. HUANG Z W,LI G F,YANG R Y.Review and development trends of coalbed methane exploitation technology in China[J].Journal of China Coal Society,2022,47(9):3212-3238. [4] 陈仁朋,邹聂,吴怀娜,等.盾构掘进地表沉降机器学习预测与控制研究综述[J].华中科技大学学报(自然科学版),2022,50(8):56-65. CHEN R P,ZOU N,WU H N,et al.Review of prediction and control for surface settlement caused by shield tunneling based on machine learning[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(8):56-65. [5] 鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报,2019,30(6):1793-1818. E H H,ZHANG W J,XIAO S Q,et al.Survey of entity relationship extraction based on deep learning[J].Journal of Software,2019,30(6):1793-1818. [6] 姚萍,李坤伟,张一帆.知识图谱构建技术综述[J].信息系统工程,2020(5):121-123. YAO P,LI K W,ZHANG Y F.Summary of research and application of knowledge graphs in riskmanagement field of commercial banks[J].Information System Engineering,2020(5):121-123. [7] 袁俊,刘国柱,梁宏涛,等.知识图谱在商业银行风控领域的研究与应用综述[J].计算机工程与应用,2022,58(19):37-52. YUAN J,LIU G Z,LIANG H T,et al.Summary of research and application of knowledge graghs in risk management field of commercial banks[J].Computer Engineering and Applications,2022,58(19):37-52. [8] PUJARA J,MIAO H,GETOOR L,et al.Ontology-aware partitioning forknowledge graph identification[J].Automated Knowledge Base Construction,2013,4(1):26-27. [9] BAO M,CAFARELLA M J,SODERLAND S,et al.Open information extraction from the Web[C]//Proceedings of the 20th International Joint Conference on Artifical Intelli-gence,2007:2670-2676. [10] 熊中敏,马海宇,李帅,等.知识图谱在海洋领域的应用及前景分析综述[J].计算机工程与应用,2022,58(3):15-33. XIONG Z M,MA H Y,LI S,et al.Summary of application and prospect analysis of knowledge graphs in marine field[J].Computer Engineering and Applications,2022,58(3):15-33. [11] 林明.基于知识图谱的交互关系浏览与分析:可视化模型与系统实现[D].杭州:浙江大学,2017:10-25. LIN M.Browsing and analysis of interactive relationship based on knowledge graph:visual model and system imple-mentation[D].Hangzhou:Zhejiang University,2017:10-25. [12] XU B,LIANG J,XIE C,et al.CN-DBpedia2:an extraction and verification framework for enriching Chinese encyclopedia knowledge base[J].Data Intelligence,2019,1(3):12. [13] NIU X,SUN X,WANG H,et al.Zhishi.me-weaving Chinese linking open data[C]//Proceedings of International Conference on the Semantic Web,2011. [14] BIZER C,LEHMANN J,KOBILAROV G,et al.Dbpedia—a crystallization point for the web of data[J].Web Semantics:Science,Services and Agents on the World Wide Web,2009,7(3):154-165. [15] VRANDE?I? D,KR?TZSCH M.Wikidata:a free collaborative knowledge base[J].Communications of the ACM,2014,57(10):78-85. [16] MILLER G A.Wordnet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41. [17] BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaborative lycreated graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data,2008:1247-1250. [18] SUCHANEK F M,KASNECI G,WEIKUM G.Yago:alarge ontology from wikipedia and wordnet[J].Web Semantics:Science,Services and Agents on the World Wide Web,2008,6(3):42-43. [19] 邓凯,杨频,李益洲,等.一种可快速迁移的领域知识图谱构建方法[J].计算机科学,2022,49(S1):100-108. DENG K,YANG P,LI Y Z,et al.Fast and transmissible domain knowledge graph construction method[J].Computer Science,2022,49(S1):100-108. [20] 石刚.一种基于知识图谱的用户搜索意图挖掘方法的研究[D].北京:国际关系学院,2016:10-12. SHI G.Research on a method of mining user’s search intent based on knowledge graph[D].Beijing:School of International Relations,2016:10-12. [21] 侯梦薇,卫荣,陆亮,等.知识图谱研究综述及其在医疗领域的应用[J].计算机研究与发展,2018,55(12):2587-2599. HOU M W,WEI R,LU L,et al.Research review of knowledge graph and its application in medical domain[J].Journal of Computer Research and Development,2018,55(12):2587-2599. [22] ISOZAKI H.Efficient support vector classifiers for named entity recognition[C]//Proceedings of the 19th International Conference on Computational Linguistics,2002:1-7. [23] ALTUN Y,TSOCHANTARIDIS I,HOFMANN T.Hidden markov support vector machines[C]//Proceedings of the 20th International Conference on Machine Learning(ICML-3),2003:3-10. [24] SONG S,ZHANG N,HUANG H.Named entity recogni-tion based on conditional random fields[J].Cluster Computing,2017(1):1-12. [25] 冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报,2002(1):57-59. FENG X T,ZHAO H B.Prediction of rockburst using support vector machine[J].Journal of Northeastern University,2002(1):57-59. [26] 向杰,陈建平,肖克炎,等.基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例[J].地质通报,2019,38(12):2010-2021. XIANG J,CHEN J P,XIAO K Y,et al.3D metallogenic prediction based on machine learning:a case study of theLala copper deposit in Sichuan Province[J].Geological Bulletin of China,2019,38(12):2010-2021. [27] SOBHANA N V,GHOSH S K,MITRA P.Entity relation extraction from geological text using conditional random fields and subsequence kernels[C]//Proceedings of 2012 Annual IEEE India Conference,2012:832-840. [28] HU Z,HU X,QI L,et al.An information extraction method for sedimentology literature with semantic rules[C]//Proceedings of 2021 IEEE International Conference on Dependable,Autonomic and Secure Computing,Interna-tional Conference on Pervasive Intelligence and Computing,International Conference on Cloud and Big Data Computing,International Conference Cyber Science and Technology Congress,2021:475-481. [29] 李舟军,范宇,吴贤杰.面向自然语言处理的预训练技术研究综述[J].计算机科学,2020,47(3):162-173. LI Z J,FAN Y,WU Y J.Survey of natural language pro-cessing pre-training techniques[J].Computer Science,2020,47(3):162-173. [30] LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al.Neuralarchitectures for named entity recognition[C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics,2016:260-270. [31] 廖振鑫.面向地质领域的知识图谱构建研究及应用[D].成都:电子科技大学,2021. LIAO Z X.The construction and application of knowledge graph for geology[D].Chengdu:University of Electronic Science and Technology,2021. [32] QIU Q,XIE Z,WU L,et al.BiLSTM-CRF for geological named entity recognition from the geoscience literature[J].Earth Science Informatics,2019,12(4):565-579. [33] 谢雪景,谢忠,马凯,等.结合BERT与BiGRU-Attention CRF模型的地质命名实体识别[J/OL].地质通报:1-13(2021-09-13)[2022-03-31].https://kns.cnki.net/kcms/detail/11.4648.p.20210913.1040.002.html. XIE X J,XIE Z,MA K,et al.Geological named entity recognition based on BERT and BiGRU-attention CRF model[J/OL].Geological Bulletin of China:1-13(2021-09-13)[2022-03-31].https://kns.cnki.net/kcms/detail/11.4648.p.20210913.1040.002.html. [34] LI X,FENG J,MENG Y,et al.A unified MRC framework for named entity recognition[J].arXiv:1910.11476,2019. [35] XUE M,YU B,ZHANG Z,et al.Coarse-to-fine pretraining for named entity recognition[J].arXiv:2010.08210,2020. [36] HEARST M A.Automatic acquisition of hyponyms from large text corpora[C]//Proceedings of the 15th International Conference on Computational Linguistics,1992:539-545. [37] 张悦.矿物领域知识图谱构建技术研究与实现[D].北京:中国地质大学,2021. ZHANG Y.Research and implementation of mineral knowledge graph construction technology[D].Beijing:China University of Geosciences,2021. [38] DUDA R O,HART P E,NILSSON N J,et al.Semantic network representations in rule-based inference systems[M]//Pattern-directed inference systems.[S.l.]:Academic Press,1978:203-221. [39] ZHENG S,WANG F,BAO H,et al.Joint extraction of entities and relations based on anovel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,2017:1227-1236. [40] ZENG D,LIU K,LAI S,et al.Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics,2014:2335-2344. [41] 张士红.基于深度学习的四川会理“拉拉式”铜矿找矿预测研究[D].北京:中国地质大学,2020. ZHANG S H.Deep learning for mineral prospectivity mapping of LALA-type copper deposit in the huili region,sichuan[D].Beijing:China University of Geosciences,2020. [42] LIN Y,SHEN S,LIU Z,et al.Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,2016:2124-2133. [43] 许浩亮,李雁群,何云琪,等.中文嵌套命名实体关系抽取研究[J].北京大学学报(自然科学版),2019,55(1):8-14. XU H L,LI Y Q,HE Y Q,et al.Research on Chinese nested named entity relation extraction[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):8-14. [44] 汪陈.面向中文文献的金矿时空属性信息抽取及知识图谱可视化表达[D].合肥:合肥工业大学,2021. WANG C.Extraction of spatiotemporal attributes information of gold mines and visual expression of knowledge graphs for Chinese literature[D].Hefei:Hefei University of Technology,2021. [45] 朱小龙.地质文本中油气藏特征提取及成藏知识图谱构建研究[D].北京:中国地质大学,2021. ZHU X L.Research on reservoir characteristics extraction and knowledge graph construction from geological document[D].Beijing:China University of Geosciences,2021. [46] 谢益辉,朱钰.Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛,2008(2):90-96. XIE Y H,ZHU Y.Bootstrap methods:developments and frontiers[J].Journal of Statistics and Information,2008(2):90-96. [47] BRIN S.Extracting patterns and relations from the world wide web[J].Lecture Notes in Computer Science,1998,1590:172-183. [48] GLASS M,BARKER K.Bootstrapping relation extraction using parallel news articles[C]//Proceedings of the IJCAI Workshop on Learning by Reading and its Applications in Intelligent Question-Answering,2011. [49] MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP,2009:1003-1011. [50] HUANG Y Y,WANG W Y.Deep residual learning for weakly-supervised relation extraction[J].arXiv:1707. 08866,2017. [51] 张少伟,王鑫,陈子睿,等.有监督实体关系联合抽取方法研究综述[J].计算机科学与探索,2022,16(4):713-733. ZHANG S W,WANG X,CHEN Z R,et al.Survey of super-vised joint entity relation extraction methods[J].Journal of Frontiers of Computer Science and Technology,2022,16(4):713-733. [52] AHN D.The stages of event extraction[C]//Proceedings of the Workshop on Annotating and Reasoning about Time and Events.Sydney,Australia:Association for Computational Linguistics,2006:1-8. [53] RIlOFF E.Automatically constructing a dictionary for information extraction tasks[C]//Proceedings of the 11th National Conference on Artificial Intelligence,1993:811-816. [54] 姜吉发.自由文本的信息抽取模式获取的研究[D].北京:中国科学院研究生院(计算技术研究所),2004. JIANG J F.A Research about the pattern acquisition for free text IE[D].Beijing:The Graduate School of the Chinese Academy of Sciences(Institute of Computational Technology),2004. [55] LIAO S,GRISHMAN R.Using document level crossevent inference to improve event extraction[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,2010. [56] 马春明,李秀红,李哲,等.事件抽取综述[J].计算机应用,2022(10):2975-2989. MA C M,LI X H,LI Z,et al.Survey of event extrac-tion[J].Journal of Computer Applications,2022(10):2975-2989. [57] CHIEU H L,NG H T.A maximum entropy approach to information extraction from semi-structured and free text[C]//Proceedings of the AAAI-02,2002:786-791. [58] LI S,YOU M J,LI D W,et al.Identifying coal mine safety production risk factors by employing text mining and Bayesian network techniques[J].Process Safety and Environmental Protection,2022,162:1067-1081. [59] CHEN Y,XU L,KANG L,et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics,2015. [60] NGUYEN T H,CHO K,GRISHMAN R.Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2016. [61] 王侃,王孟洋,刘鑫,等.融合自注意力机制与CNN-BiGRU的事件检测[J].西安电子科技大学学报,2022(5):181-188. WANG K,WANG M Y,LIU X,et al.Event detection by combining self?attention and CNN-BIGRU[J].Journal of Xidian University,2022(5):181-188. [62] TRIEU H L,TRAN T T,DUONG K N A,et al.DeepEventMine:end-to-end neural nested event extraction from biomedical texts[J].Bioinformatics,2020,36(19):4910-4917. [63] 胡慧君,王聪,代建华,等.基于BiLSTM-CRF的社会突发事件研判方法[J].中文信息学报,2022,36(3):154-161. HU H J,WANG C,DAI J H,et al.Social emergency event judgement based on BiLSTM-CRF[J].Journal of Chinese Information Processing,2022,36(3):154-161. [64] 李旭晖,程威,唐小雅,等.基于多层卷积神经网络的金融事件联合抽取方法[J].图书情报工作,2021,65(24):89-99. LI X H,CHENG W,TANG X Y,et al.A joint extraction method of financial events based on multi-layerconvolutional neural networks[J].Library and Information Service,2021,65(24):89-99. [65] 丁思媛,乔晓东,张运良.基于事件抽取技术的听证公开文本挖掘方法研究[J].情报杂志,2022,41(1):23. DING S Y,QIAO X D,ZHANG Y L.Research on mining method of public hearing text based on eventextraction tech-nology[J].Journal of Intelligence,2022,41(1):23. [66] 林海伦,王元卓,贾岩涛.面向网络大数据的知识融合方法综述[J].计算机学报,2017,40(1):1-27. LIN H L,WANG Y Z,JIA Y T.Network big data oriented knowledge fusion methods:a survey[J].Chinese Journal of Computers,2017,40(1):1-27. [67] GANEA O E,HOFMANN T.Deep joint entity disambiguation with local neural attention[J].arXiv:1704. 04920,2017. [68] HU L,DING J,SHI C,et al.Graph neural entity disambiguation[J].Knowledge-Based Systems,2020,195:105620. [69] 邓启平,陈卫静,嵇灵,等.一种基于异质信息网络的学术文献作者重名消歧方法[J].数据分析与知识发现,2022(4):60-68. DENG Q P,CHEN W J,JI L,et al.Author name disambiguation based on heterogeneous information network[J].Data Analysis and Knowledge Discovery,2022(4):60-68. [70] HOBBS J.Resolve pronoum references[J].Lingua,1978,44. [71] GROSZ B J,JOSHI A K,WEINSTEIN S.Centering:a framework for modeling the local coherence of discourse[J].Computation Linguistics,2002,21(2):203-225. [72] IVAN P F,ALAN B S.A theory for record linkage[J].Journal of the American Statistical Association,2012,64:328. [73] 张富,杨琳艳,李健伟,等.实体对齐研究综述[J].计算机学报,2022,45(6):1195-1225. ZHANG F,YANG L Y,LI J W,et al.An overview of entity alignment methods[J].Chinese Journal of Computers,2022,45(6):1195-1225. [74] MUDGAL S,LI H,REKATSINAS T,et al.Deep learning for entity matching:a design space exploration[C]//Proceedings of the 2018 International Conference on Management of Data,2018:19-34. [75] WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference,2019:2022-2032. [76] ZENG W,ZHAO X,TANG J,et al.Collective embeddingbased entity alignment via adaptive features,CoRR abs[J].arXiv:2019.08404,2020. [77] 杨飞洪,孙海霞,李姣.一种文本相似度与BERT模型融合的手术操作术语归一化方法[J].中文信息学报,2021,35(4):44-50. YANG F H,SUN H X,LI J.A method for surgery term normalization based on text similarity and BERT model[J].Journal of Chinese Information Processing,2021,35(4):44-50. [78] 谭永杰,文敏,朱月琴,等.地质数据的大数据特性研究[J].中国矿业,2017,26(9):80. TAN Y J,WEN M,ZHU Y Q,et al.Research on the big data characteristics of geological data[J].China Mining Magazine,2017,26(9):80. [79] WAN S,LAN Y,GUO J,et al.A deep architecture for semantic matching with multiple positional sentence representations[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,2016:2835-2841. [80] LU Z,LI H.A deep architecture for matching short texts[C]//Advances in Neural Information Processing Systems,2013. [81] WANG G,HU Y,TIAN X,et al.An integrated open approach to capturing systematic knowledge for manufacturing process innovation based on collective intelligence[J].Applied Sciences,2018,8(3). [82] 朱祥,张云秋.近年来知识融合研究进展与趋势[J].图书情报工作,2019,63(16):143-150. ZHU X,ZHANG Y Q.Progress and trend of knowledge fusion research in recent years[J].Library and Information Service,2019,63(16):143-150. [83] MCINNES B T.VCU at Semeval-2016 task 14:evaluating similarity measures for semantic taxonomy enrichment[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics,2016. [84] 邱凌,张安思,李少波,等.航空制造知识图谱构建研究综述[J].计算机应用研究,2022(4):968-977. QIU L,ZHANG A S,LI S B,et al.Survey on building knowledge graphs for aerospace manufacturing[J].Application Research of Computers,2022(4):968-977. [85] 封皓君,段立,张碧莹.面向知识图谱的知识推理综述[J].计算机系统应用,2021,30(10):21-30. FENG H J,DUAN L,ZHANG B Y.Overview on knowledge reasoning for knowledge graph[J].Computer Systems & Applications,2021,30(10):21-30. [86] HAARSLEV V,M?ELLER R.RACER system descrip-tion[C]//Proceedings of the International Joint Conference on Automated Reasoning,2001:701-705. [87] TSARKOV D,HORROCKS I.Fact++ description logic reasoner:system description.[C]//Proceedings of the 3rd International Joint Conference on Automated Reasoning,2006. [88] CARROLL JJ,DICKINSON I,DOLLIN C,et al.JENA:implementing the semantic web recommendations[C]//Proceedings of the International World Wide Web Conference on Alternate Track Papers & Posters,2004. [89] PEDRINACI C,BERNARAS A,SMITHERS T,et al.A framework for ontology reuse and persistence integrating UML and sesame[C]//Proceedings of the Conference on Current Topics in Artificial Intelligence,Conference of the Spanish Association for Artificial Intelligenc,2004. [90] LEE T W,LEWICKI M S.Blind source separation of more sources than mixtures using over complete representations[J].IEEE Signal Processing Letters,1999,6(4):87-90. [91] LAO N,MITCHELL T M,COHEN W W.Random walk inference and learning in a large scale knowledge base[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,2011. [92] GALáRRAGA L,TEFLIOUDI C,HOSE K,et al.Fast rule mining in ontological knowledge bases with amie+[J].Vldb Journal,2015,24(6):707-730. [93] 刘鹏,叶帅,舒雅,等.煤矿安全知识图谱构建及智能查询方法研究[J].中文信息学报,2020,34(11):49-59. LIU P,YE S,SHU Y,et al.Coalmine safety:knowledge graph construction and its QA approach[J].Journal of Chinese Information Processing,2020,34(11):49-59. [94] 马连博.基于遗传算法优化神经网络的露天矿知识图谱构建方法:CN113569055A[P].2021-10-29. MA L B.Construction method of open-pit mine knowledge map based on neural network optimization by genetic algo-rithm:CN113569055A[P].2021-10-29. |
[1] | 马自力, 王淑营, 张海柱, 黎荣. 基于知识图谱的智能问答意图识别联合模型[J]. 计算机工程与应用, 2023, 59(6): 171-178. |
[2] | 张嘉宇, 郭玫, 张永亮, 李梅, 耿楠, 耿耀君. 细粒度苹果病虫害知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(5): 270-280. |
[3] | 吴国栋, 王雪妮, 刘玉良. 知识图谱增强的图神经网络推荐研究进展[J]. 计算机工程与应用, 2023, 59(4): 18-29. |
[4] | 张明星, 张骁雄, 刘姗姗, 田昊, 杨琴琴. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42. |
[5] | 肖立中, 臧中兴, 宋赛赛. 融合自注意力的关系抽取级联标记框架研究[J]. 计算机工程与应用, 2023, 59(3): 77-83. |
[6] | 王艺茹, 史东辉. 使用CIDOC CRM构建建筑领域非遗知识本体[J]. 计算机工程与应用, 2023, 59(3): 317-326. |
[7] | 景丽, 姚克. 融合知识图谱和多模态的文本分类研究[J]. 计算机工程与应用, 2023, 59(2): 102-109. |
[8] | 胡浩, 高静, 刘振羽. 奶牛产奶量性状相关基因知识图谱的研究与构建[J]. 计算机工程与应用, 2023, 59(2): 299-305. |
[9] | 罗承天, 叶霞. 基于知识图谱的推荐算法研究综述[J]. 计算机工程与应用, 2023, 59(1): 49-60. |
[10] | 张海涛, 苏琳. 结合知识图谱的变分自编码器零样本图像识别[J]. 计算机工程与应用, 2023, 59(1): 236-243. |
[11] | 徐有为, 张宏军, 程恺, 廖湘琳, 张紫萱, 李雷. 知识图谱嵌入研究综述[J]. 计算机工程与应用, 2022, 58(9): 30-50. |
[12] | 张昕, 刘思远, 徐雁翎. 结合注意力机制的知识感知推荐算法[J]. 计算机工程与应用, 2022, 58(9): 168-174. |
[13] | 汪玉, 王鑫, 张淑娟, 郑国强, 赵龙, 郑高峰. 异构大数据环境中高效率知识融合方法的研究[J]. 计算机工程与应用, 2022, 58(6): 142-148. |
[14] | 闫志豪, 刘京菊, 郭徽, 郭兵阳. 基于域名系统知识图谱的CDN域名识别技术[J]. 计算机工程与应用, 2022, 58(6): 149-156. |
[15] | 唐宏, 范森, 唐帆, 朱龙娇. 融合知识图谱与注意力机制的推荐算法[J]. 计算机工程与应用, 2022, 58(5): 94-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||