计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (5): 28-39.DOI: 10.3778/j.issn.1002-8331.2208-0229
孙书魁,范菁,李占稳,曲金帅,路佩东
出版日期:
2023-03-01
发布日期:
2023-03-01
SUN Shukui, FAN Jing, LI Zhanwen, QU Jinshuai, LU Peidong
Online:
2023-03-01
Published:
2023-03-01
摘要: 新型冠状病毒肺炎(corona virus disease,COVID-19)的暴发对全球人类的生命财产安全造成了巨大威胁。人工智能(artificial intelligence,AI)为助力打赢这场疫情攻坚战发挥了不可替代的作用。由于AI的助力,医疗资源紧张的问题得到大幅度缓解,并提高了医疗诊断效率,同时也避免接触感染的风险。阐述了COVID-19和AI的背景知识,从疫情趋势预测、疫情溯源追踪、检测诊断、药物开发、疫苗研制、药物再利用、网络舆论管控以及基因组测序这8个疫情防控的环节讨论了AI在本次COVID-19中的研究进展,并列举本次疫情中AI所面临的挑战,浅谈本次疫情对我国AI产业影响以及两者的辩证关系,对全文进行总结。
孙书魁, 范菁, 李占稳, 曲金帅, 路佩东. 人工智能在新型冠状病毒肺炎中的研究综述[J]. 计算机工程与应用, 2023, 59(5): 28-39.
SUN Shukui, FAN Jing, LI Zhanwen, QU Jinshuai, LU Peidong. Survey of Artificial Intelligence in COVID-19 Pandemic[J]. Computer Engineering and Applications, 2023, 59(5): 28-39.
[1] LIU Y,GAYLE A A,WILDER-SMITH A,et al.The reproductive number of COVID-19 is higher compared to SARS coronavirus[J].Journal of Travel Medicine,2020:1-4. [2] ROBINSON P C,LIEW D F L,TANNER H L,et al.COVID-19 therapeutics:challenges and directions for the future[J].Proceedings of the National Academy of Sciences,2022,119(15):e2119893119. [3] CASCELLA M,RAJNIK M,ALEEM A,et al.Features,evaluation,and treatment of coronavirus(COVID-19)[J].Statpearls[internet],2022:32150360. [4] ZHANG K,LIU X,SHEN J,et al.Clinically applicable AI system for accurate diagnosis,quantitative measurements,and prognosis of COVID-19 pneumonia using computed tomography[J].Cell,2020,181(6):1423-1433. [5] SONG C Y,XU J,HE J Q,et al.Immune dysfunction following COVID-19,especially in severe patients[J].Scientific Reports,2020,10(1):1-11. [6] YASSINE H M,SHAH Z.How could artificial intelligence aid in the fight against coronavirus? An interview with Dr Hadi M Yassine and Dr Zubair Shah by Felicity Poole,Commissioning Editor[J].Expert Review of Anti-infective Therapy,2020,18(6):493-497. [7] KUMAR V,SINGH D,KAUR M,et al.Overview of current state of research on the application of artificial intelligence techniques for COVID-19[J].PeerJ Computer Science,2021,7:e564. [8] JAMSHIDI M,LALBAKHSH A,TALLA J,et al.Artificial intelligence and COVID-19:deep learning approaches for diagnosis and treatment[J].IEEE Access,2020,8:109581-109595. [9] 蔡晓琼,郭晶磊,黄继汉,等.人工智能技术在新型冠状病毒肺炎中的应用[J].中国医学物理学杂志,2021,38(7):915-920. CAI X Q,GUO J L,HUANG J H,et al.Advances in research on artificial intelligence technology in COVID-19[J].Chinese Journal of Medical Physics,2021,38(7):915-920. [10] WU D,WU T,LIU Q,et al.The SARS-CoV-2 outbreak:what we know[J].International Journal of Infectious Diseases,2020,94:44-48. [11] TOBAIQY M,QASHQARY M,AL-DAHERY S,et al.Therapeutic management of patients with COVID-19:a systematic review[J].Infection Prevention in Practice,2020,2(3):100061. [12] GOODFELLOW I,BENGIO Y,COURVILLE A.Deep learning[M].[S.l.]:MIT Press,2016. [13] DONG S,WANG P,ABBAS K.A survey on deep learning and its applications[J].Computer Science Review,2021,40:100379. [14] BRAGAZZI N L,DAI H,DAMIANI G,et al.How big data and artificial intelligence can help better manage the COVID-19 pandemic[J].International Journal of Environmental Research and Public Health,2020,17(9):3176. [15] GUPTA R,SRIVASTAVA D,SAHU M,et al.Artificial intelligence to deep learning:machine intelligence approach for drug discovery[J].Molecular Diversity,2021,25(3):1315-1360. [16] ZHENG C,DENG X,FU Q,et al.Deep learning-based detection for COVID-19 from chest CT using weak label[J].MedRxiv,2020. [17] HUANG T,CHU Y,SHAMS S,et al.Population stratification enables modeling effects of reopening policies on mortality and hospitalization rates[J].Journal of Biomedi-cal Informatics,2021,119:103818. [18] LIU X,XU X,LI G,et al.Differential impact of non-pharmaceutical public health interventions on COVID-19 epidemics in the United States[J].BMC Public Health,2021,21(1):1-7. [19] FRIEDMAN J,LIU P,TROEGER C E,et al.Predictive performance of international COVID-19 mortality forecasting models[J].Nature Communications,2021,12(1):1-13. [20] LI Y,JIA W,WANG J,et al.ALeRT-COVID:attentive lockdown-aware transfer learning for predicting COVID-19 pandemics in different countries[J].Journal of Healthcare Informatics Research,2021,5(1):98-113. [21] WANG J,TANG K,FENG K,et al.High temperature and high humidity reduce the transmission of COVID-19[J].SSRN Electronic Journal,2020,3551767:2020b. [22] BRAUER M,ZHAO J T,BENNITT F B,et al.Global access to handwashing:implications for COVID-19 control in low-income countries[J].Environmental Health Perspectives,2020,128(5):057005. [23] ALZU’BI A,ALASAL S A,KHEIRALLAH K A,et al.COVID-19 simulation study—the effect of strict non-pharmaceutical interventions(NPIs) on controlling the spread of COVID-19[J].PeerJ,2021,9:e11172. [24] ROCKETT R J,ARNOTT A,LAM C,et al.Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling[J].Nature Medicine,2020,26(9):1398-1404. [25] HSIANG S,ALLEN D,ANNAN-PHAN S,et al.Publisher correction:the effect of large-scale anti-contagion policies on the COVID-19 pandemic[J].Nature,2020,585(7824):E7. [26] PARBAT D,CHAKRABORTY M.A python based support vector regression model for prediction of COVID19 cases in India[J].Chaos,Solitons & Fractals,2020,138:109942. [27] DONG E,DU H,GARDNER L.An interactive web-based dashboard to track COVID-19 in real time[J].The Lancet Infectious Diseases,2020,20(5):533-534. [28] KERMACK W O,MCKENDRICK A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,Series A,1927,115(772):700-721. [29] HETHCOTE H W.The mathematics of infectious diseases[J].SIAM Review,2000,42(4):599-653. [30] ZHENG N,DU S,WANG J,et al.Predicting COVID-19 in China using hybrid AI model[J].IEEE Transactions on Cybernetics,2020,50(7):2891-2904. [31] PURKAYASTHA S,BHATTACHARYYA R,BHADURI R,et al.A comparison of five epidemiological models for transmission of SARS-CoV-2 in India[J].BMC Infectious Diseases,2021,21(1):1-23. [32] LALMUANAWMA S,HUSSAIN J,CHHAKCHHUAK L.Applications of machine learning and artificial intelligence for Covid-19(SARS-CoV-2) pandemic:a review[J].Chaos,Solitons & Fractals,2020,139:110059. [33] RAO A S R S,VAZQUEZ J A.Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine[J].Infection Control & Hospital Epidemiology,2020,41(7):826-830. [34] KUMAR A,GUPTA P K,SRIVASTAVA A.A review of modern technologies for tackling COVID-19 pandemic[J].Diabetes & Metabolic Syndrome:Clinical Research & Reviews,2020,14(4):569-573. [35] 刘思远,张丽军,刘雷.人工智能在抗击新型冠状病毒肺炎疫情中的应用[J].中国医学物理学杂志,2020,37(8):1076-1080. LIU S Y,ZHANG L J,LIU L.Application of artificial intelligence in fighting against COVID-19 pandemic[J].Chinese Journal of Medical Physics,2020,37(8):1076-1080. [36] FANG Y,ZHANG H,XIE J,et al.Sensitivity of chest CT for COVID-19:comparison to RT-PCR[J].Radiology,2020,296(2):115-117. [37] 刘锐,丁辉,尚媛园,等.COVID-19医学影像数据集及研究进展[J].计算机工程与应用,2021,57(22):15-27. LIU R,DING H,SHANG Y Y,et al.COVID-19 medical imaging dataset and research progress[J].Computer Engineering and Applications,2021,57(22):15-27. [38] PENG Y,LIU E,PENG S,et al.Using artificial intelligence technology to fight COVID-19:a review[J].Artificial Intelligence Review,2022:1-37. [39] YASAKA K,AKAI H,KUNIMATSU A,et al.Deep learning with convolutional neural network in radiology[J].Japanese Journal of Radiology,2018,36(4):257-272. [40] ABBASIAN ARDAKANI A,ACHARYA U R,HABIBOLLAHI S,et al.COVIDiag:a clinical CAD system to diagnose COVID-19 pneumonia based on CT findings[J].European Radiology,2021,31(1):121-130. [41] BAI H X,WANG R,XIONG Z,et al.Erratum:artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT(Radiology(2020) 2963(E156-E165))[J].Radiology,2021:225. [42] ARDAKANI A A,KANAFI A R,ACHARYA U R,et al.Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images:results of 10 convolutional neural networks[J].Computers in Biology and Medicine,2020,121:103795. [43] HAN Z,WEI B,HONG Y,et al.Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning[J].IEEE Transactions on Medical Imaging,2020,39(8):2584-2594. [44] KO H,CHUNG H,KANG W S,et al.COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image:model develop-ment and validation[J].Journal of Medical Internet Research,2020,22(6):e19569. [45] LI L,QIN L,XU Z,et al.Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT:evaluation of the diagnostic accuracy[J].Radiology,2020,296(2):E65-E71. [46] LIU C,WANG X,LIU C,et al.Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning[J].Biomedical Engineering Online,2020,19(1):1-14. [47] MEI X,LEE H C,DIAO K,et al.Artificial intelligence-enabled rapid diagnosis of patients with COVID-19[J].Nature Medicine,2020,26(8):1224-1228. [48] MISHRA A K,DAS S K,ROY P,et al.Identifying COVID19 from chest CT images:a deep convolutional neural networks based approach[J].Journal of Healthcare Engineering,2020:8843664. [49] 谢娟英,张凯云.XR-MSF-Unet:新冠肺炎肺部CT图像自动分割模型[J].计算机科学与探索,2022,16(8):1850-1864. XIE J Y,ZHANG K Y.XR-MSF-Unet:an automatic segmentation model for COVID-19 lung CT images[J].Journal of Frontiers of Computer Science and Technology,2022,16(8):1850-1864. [50] NI Q,SUN Z Y,QI L,et al.A deep learning approach to characterize 2019 coronavirus disease(COVID-19) pneumonia in chest CT images[J].European Radiology,2020,30(12):6517-6527. [51] 王威,胡亿洋,王新,等.针对新型冠状病毒肺炎X射线图像识别的DD-CovidNet模型[J].计算机辅助设计与图形学学报,2021,33(11):1649-1657. WANG W,HU Y Y,WANG X,et al.DD-CovidNet model for X-ray images recognition of coronavirus disease 2019[J].Journal of Computer-Aided Design & Computer Graphics,2021,33(11):1649-1657. [52] STEPHEN O,SAIN M,MADUH U J,et al.An efficient deep learning approach to pneumonia classification in healthcare[J].Journal of Healthcare Engineering,2019:4180949. [53] TO?A?AR M,ERGEN B,C?MERT Z.COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches[J].Computers in Biology and Medicine,2020,121:103805. [54] TUNCER T,DOGAN S,OZYURT F.An automated residual exemplar local binary pattern and iterative ReliefF based COVID-19 detection method using chest X-ray image[J].Chemometrics and Intelligent Laboratory Systems,2020,203:104054. [55] UCAR F,KORKMAZ D.COVIDiagnosis-Net:deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019(COVID-19) from X-ray images[J].Medical Hypotheses,2020,140:109761. [56] KHAN A I,SHAH J L,BHAT M M.CoroNet:a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images[J].Computer Methods and Programs in Biomedicine,2020,196:105581. [57] RAHIMZADEH M,ATTAR A.A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2[J].Informatics in Medicine Unlocked,2020,19:100360. [58] OZTURK T,TALO M,YILDIRIM E A,et al.Automated detection of COVID-19 cases using deep neural networks with X-ray images[J].Computers in Biology and Medicine,2020,121:103792. [59] BRUNESE L,MERCALDO F,REGINELLI A,et al.Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays[J].Computer Methods and Programs in Biomedicine,2020,196:105608. [60] LOEY M,SMARANDACHE F,KHALIFA N E M.Within the lack of chest COVID-19 X-ray dataset:a novel detection model based on GAN and deep transfer learning[J].Symmetry,2020,12(4):651. [61] ZHAVORONKOV A.Artificial intelligence for drug discovery,biomarker development,and generation of novel chemistry[J].Molecular Pharmaceutics,2018,15(10):4311-4313. [62] 茅鸯对,柳鹏程.药物研发领域人工智能应用与创新发展策略探讨[J].中国新药与临床杂志,2021,40(6):430-435. MAO Y D,LIU P C.Discussion on application and innovative development strategy of artificial intelligence in drug research and development field[J].Chinese Journal of New Drugs and Clinical Remdeies,2021,40(6):430-435. [63] HASSANZADEH P,ATYABI F,DINARVAND R.The significance of artificial intelligence in drug delivery system design[J].Advanced Drug Delivery Reviews,2019,151:169-190. [64] JOSHI Tanuja,JOSHI Tushar,PUNDIR H,et al.Predictive modeling by deep learning,virtual screening and molecular dynamics study of natural compounds against SARS-CoV-2 main protease[J].Journal of Biomolecular Structure and Dynamics,2021,39(17):6728-6746. [65] TON A T,GENTILE F,HSING M,et al.Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds[J].Molecular Informatics,2020,39(8):2000028. [66] RUSSO G,RECHE P,PENNISI M,et al.The combination of artificial intelligence and systems biology for intelligent vaccine design[J].Expert Opinion on Drug Discovery,2020,15(11):1267-1281. [67] ANASIR M I,POH C L.Structural vaccinology for viral vaccine design[J].Frontiers in Microbiology,2019,10:738. [68] 李兴航,杨晓明.抗原设计新技术及其在疫苗中的应用和发展[J].中国生物制品学杂志,2021,34(4):468-474. LI X H,YANG X M.New technology for antigen design and its application in vaccine[J].Chinese Journal of Biologicals,2021,34(4):468-474. [69] ONG E,WONG M U,HUFFMAN A,et al.COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning[J].Frontiers in Immunology,2020,11:1581. [70] 王晓旭,吴心怡,梁浩,等.新型冠状病毒肺炎治疗药物研发进展[J].中国药理学与毒理学杂志,2021,35(8):561-574. WANG X X,WU X Y,LIANG H,et al.Progress in drug development for treatment of COVID-19[J].Chinese Journal of Pharmacology and Toxicology,2021,35(8):561-574. [71] OZERY-FLATO M,GOLDSCHMIDT Y,SHAHAM O,et al.Framework for identifying drug repurposing candidates from observational healthcare data[J].Jamia Open,2020,3(4):536-544. [72] PARANJPE M D,TAUBES A,SIROTA M.Insights into computational drug repurposing for neurodegenerative disease[J].Trends in Pharmacological Sciences,2019,40(8):565-576. [73] 陈杨,陈轶伦,曾文杰,等.人工智能在药物再定位的应用[J].中国医药导刊,2022,24(4):334-341. CHEN Y,CHEN Y L,ZENG W J,et al.Application of artificial intelligence in drug repurposing[J].Chinese Journal of Medicinal Guide,2022,24(4):334-341. [74] ZHOU Y,HOU Y,SHEN J,et al.Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2[J].Cell Discovery,2020,6(1):1-18. [75] ZENG X,SONG X,MA T,et al.Repurpose open data to discover therapeutics for COVID-19 using deep learning[J].Journal of Proteome Research,2020,19(11):4624-4636. [76] MORSELLI GYSI D,DO VALLE í,ZITNIK M,et al.Network medicine framework for identifying drug-repurposing opportunities for COVID-19[J].Proceedings of the National Academy of Sciences,2021,118(19):e2025581118. [77] WANG Q,LI M,WANG X,et al.COVID-19 literature knowledge graph construction and drug repurposing report generation[J].arXiv:2007.00576,2020. [78] ZHANG R,HRISTOVSKI D,SCHUTTE D,et al.Drug repurposing for COVID-19 via knowledge graph completion[J].Journal of Biomedical Informatics,2021,115:103696. [79] GORDON D E,JANG G M,BOUHADDOU M,et al.A SARS-CoV-2 protein interaction map reveals targets for drug repurposing[J].Nature,2020,583(7816):459-468. [80] BECK B R,SHIN B,CHOI Y,et al.Predicting commercially available antiviral drugs that may act on the novel coronavirus(SARS-CoV-2) through a drug-target interaction deep learning model[J].Computational and Structural Biotechnology Journal,2020,18:784-790. [81] MALL R,ELBASIR A,AL MEER H,et al.Data-driven drug repurposing for COVID-19[J].ChemRxiv,2020. [82] KHAN R,SHRIVASTAVA P,KAPOOR A,et al.Social media analysis with AI:sentiment analysis techniques for the analysis of twitter covid-19 data[J].Critical Rev,2020,7(9):2761-2774. [83] 陈慧敏,金思辰,林微,等.新冠疫情相关社交媒体谣言传播量化分析[J].计算机研究与发展,2021,58(7):1366-1384. CHEN H M,JIN S C,LIN W,et al.Quantitative analysis on the communication of COVID-19 related social media rumors[J].Journal of Computer Research and Development,2021,58(7):1366-1384. [84] SAMUEL J,ALI G G,RAHMAN M,et al.COVID-19 public sentiment insights and machine learning for tweets classification[J].Information,2020,11(6):314. [85] NAWAZ M S,FOURNIER-VIGER P,SHOJAEE A,et al.Using artificial intelligence techniques for COVID-19 genome analysis[J].Applied Intelligence,2021,51(5):3086-3103. [86] WANG S,KANG B,MA J,et al.A deep learning algorithm using CT images to screen for Corona Virus Disease(COVID-19)[J].European Radiology,2021,31(8):6096-6104. [87] ?ZKAYA U,?ZTüRK ?,BARSTUGAN M.Coronavirus(COVID-19) classification using deep features fusion and ranking technique[M]//Big data analytics and artificial intelligence against COVID-19:innovation vision and approach.Cham:Springer,2020:281-295. [88] PHAM Q V,NGUYEN D C,HUYNH-THE T,et al.Artificial intelligence(AI) and big data for coronavirus(COVID-19) pandemic:a survey on the state-of-the-arts[J].IEEE Access,2020,8:130820. [89] LIU W,LIANG Y,BAO X,et al.China’s logistics development trends in the post COVID-19 era[J].International Journal of Logistics Research and Applications,2022,25(6):965-976. [90] PERKUMIENĖ D,OSAMEDE A,ANDRIUKAITIEN? R,et al.The impact of COVID-19 on the transportation and logistics industry[J].Problems and Perspectives in Management,2021,19(4):458-469. [91] SERANMADEVI R,CHAKRAVERTY S,RAJ B,et al.Utilisation of virtual assistant and its impact on retail industry[C]//2022 6th International Conference on Intelligent Computing and Control Systems(ICICCS),2022:1729-1733. [92] HAR L L,RASHID U K,TE CHUAN L,et al.Revolution of retail industry:from perspective of retail 1.0 to 4.0[J].Procedia Computer Science,2022,200:1615-1625. [93] YANG T,YI X,LU S,et al.Intelligent manufacturing for the process industry driven by industrial artificial intelligence[J].Engineering,2021,7(9):1224-1230. [94] ANWARSHA A,BABU T N.Artificial intelligence-based fault diagnosis procedure for a sustainable manufacturing industry[C]//IOP Conference Series:Earth and Environmental Science,2022,1055(1):012012. [95] FU Y.Research on the development trend of online education industry considering the influence of big data and artificial intelligence[C]//The International Conference on Cyber Security Intelligence and Analytics.Cham:Springer,2019:852-859. [96] CHEN L,CHEN P,LIN Z.Artificial intelligence in education:a review[J].IEEE Access,2020,8:75264-75278. |
[1] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
[2] | 蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44. |
[3] | 江倩殷, 余志, 李熙莹. 标签差网络在噪声标签数据集中的应用[J]. 计算机工程与应用, 2023, 59(6): 92-100. |
[4] | 李宇, 韩晓红, 张玲, 张海轩, 李钢. 融合时空注意力机制的P波到时拾取网络[J]. 计算机工程与应用, 2023, 59(6): 113-124. |
[5] | 吕晓玲, 杨胜月, 张明路, 梁明, 王俊超. 改进YOLOv5网络的鱼眼图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 241-250. |
[6] | 彭佩, 张美玲, 郑东. 融合CNN_LSTM的侧信道攻击[J]. 计算机工程与应用, 2023, 59(6): 268-276. |
[7] | 肖扬, 周军. 图像边缘检测综述[J]. 计算机工程与应用, 2023, 59(5): 40-54. |
[8] | 叶伟, 陶永军, 陈锡程, 伍亚舟. 脑卒中多分类预后预测的深度集成优化方法[J]. 计算机工程与应用, 2023, 59(5): 95-105. |
[9] | 白少进, 白静, 司庆龙, 姬卉, 袁涛. 面向三维模型多样化分类的深度集成学习[J]. 计算机工程与应用, 2023, 59(5): 222-231. |
[10] | 张嘉宇, 郭玫, 张永亮, 李梅, 耿楠, 耿耀君. 细粒度苹果病虫害知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(5): 270-280. |
[11] | 淦亚婷, 安建业, 徐雪. 基于深度学习的短文本分类方法研究综述[J]. 计算机工程与应用, 2023, 59(4): 43-53. |
[12] | 杨坤融, 熊余, 张健, 储雯. 面向长短期混合数据的MOOC辍学预测策略研究[J]. 计算机工程与应用, 2023, 59(4): 130-138. |
[13] | 李玲, 郭广颂. 融合指标分组的高维混合多目标进化优化[J]. 计算机工程与应用, 2023, 59(4): 165-174. |
[14] | 胡欣珏, 付章杰. 高图像质量的一图藏两图方法[J]. 计算机工程与应用, 2023, 59(4): 235-242. |
[15] | 杨寒雨, 赵晓永, 王磊. 数据归一化方法综述[J]. 计算机工程与应用, 2023, 59(3): 13-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||