计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (5): 40-54.DOI: 10.3778/j.issn.1002-8331.2209-0122
肖扬,周军
出版日期:
2023-03-01
发布日期:
2023-03-01
XIAO Yang, ZHOU Jun
Online:
2023-03-01
Published:
2023-03-01
摘要: 边缘检测的任务是将亮度变化明显的像素点识别为目标边缘,是计算机视觉低层级问题,并且边缘检测在对象识别和检测、对象提议生成、图像分割有着重要应用。如今,边缘检测已经产生了多类方法,如基于梯度的传统检测方法、基于深度学习的边缘检测算法,还有结合新兴技术的检测方法等。对这些方法进行更精细的分类,让研究者更清楚地了解边缘检测的发展趋势。对传统边缘检测的理论依据及实现方法做出介绍;详细介绍近年来主要的深度学习边缘检测方法,根据使用的方法进行分类,并对其中所使用的创新技术进行说明,如分支结构、特征融合和损失函数。衡量算法性能采用评估指标:单图最佳阈值(ODS)和帧数(FPS),在基础数据集(BSDS500)上进行对比。对边缘检测的研究现状进行分析和总结,对未来可能的研究方向进行展望。
肖扬, 周军. 图像边缘检测综述[J]. 计算机工程与应用, 2023, 59(5): 40-54.
XIAO Yang, ZHOU Jun. Overview of Image Edge Detection[J]. Computer Engineering and Applications, 2023, 59(5): 40-54.
[1] 李翠锦,瞿中.基于深度学习的图像边缘检测算法综述[J].计算机应用,2020,40(11):3280-3288. LI C J,QU Z.Review of image edge detection algorithms based on deep learning[J].Journal of Computer Applications,2020,40(11):3280-3288. [2] KITTLER J.On the accuracy of the Sobel edge detector[J].Image and Vision Computing,1983,1(1):37-42. [3] ROBERTS L G.Machine perception of three-dimensional solids[D].Massachusetts Institute of Technology,1963. [4] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [5] CANNY J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(6):679-698. [6] KONISHI S,YUILLE A L,COUGHLAN J M,et al.Statistical edge detection:learning and evaluating edge cues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(1):57-74. [7] MARTIN D R,FOWLKES C C,MALIK J.Learning to detect natural image boundaries using local brightness,color,and texture cues[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(5):530-549. [8] ISOLA P,ZORAN D,KRISHNAN D,et al.Crisp boundary detection using pointwise mutual information[C]//European Conference on Computer Vision.Cham:Springer,2014:799-814. [9] DOLLáR P,ZITNICK C L.Fast edge detection using structured forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,37(8):1558-1570. [10] ARBELAEZ P,MAIRE M,FOWLKES C,et al.Contour detection and hierarchical image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(5):898-916. [11] GUPTA S,ARBELAEZ P,MALIK J.Perceptual organization and recognition of indoor scenes from RGB-D images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2013:564-571. [12] EVERINGHAM M,ESLAMI S M,VAN GOOL L,et al.The pascal visual object classes challenge:a retrospective[J].International Journal of Computer Vision,2015,111(1):98-136. [13] XIE S,TU Z.Holistically-nested edge detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1395-1403. [14] SU Z,LIU W,YU Z,et al.Pixel difference networks for efficient edge detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:5117-5127. [15] LIU Y,LEW M S.Learning relaxed deep supervision for better edge detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:231-240. [16] WANG Y,ZHAO X,LI Y,et al.Deep crisp boundaries:from boundaries to higher-level tasks[J].IEEE Transactions on Image Processing,2018,28(3):1285-1298. [17] DENG R,LIU S.Deep structural contour detection[C]//Proceedings of the 28th ACM International Conference on Multimedia,2020:304-312. [18] YUAN G X,HO C H,LIN C J.Recent advances of large-scale linear classification[J].Proceedings of the IEEE,2012,100(9):2584-2603. [19] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. [20] PREWITT J M S.Object enhancement and extraction[J].Picture Processing and Psychopictorics,1970,10(1):15-19. [21] KIRSCH R A.Computer determination of the constituent structure of biological images[J].Computers and Biomedical Research,1971,4(3):315-328. [22] TORRE V,POGGIO T A.On edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(2):147-163. [23] LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision,1999:1150-1157. [24] COVER T M.Elements of information theory[M].[S.l.]:John Wiley & Sons,1999. [25] GREEN D M,SWETS J A.Signal detection theory and psychophysics[M].New York:Wiley,1966. [26] MAIRE M,ARBELáEZ P,FOWLKES C,et al.Using contours to detect and localize junctions in natural images[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8. [27] SHI J,MALIK J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905. [28] ARBELAEZ P,MAIRE M,FOWLKES C,et al.From contours to regions:an empirical evaluation[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition,2009:2294-2301. [29] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings Eighth IEEE International Conference on Computer Vision,2001:416-423. [30] FANO R M.Transmission of information:a statistical theory of communications[J].American Journal of Physics,1961,29(11):793-794. [31] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05),2005:886-893. [32] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [33] LECUN Y,BOSER B,DENKER J,et al.Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems,1989. [34] TORRESANI L,SZUMMER M,FITZGIBBON A.Efficient object category recognition using classemes[C]//European Conference on Computer Vision.Berlin,Heidelberg:Springer,2010:776-789. [35] ZEILER M D,TAYLOR G W,FERGUS R.Adaptive deconvolutional networks for mid and high level feature learning[C]//2011 International Conference on Computer Vision,2011:2018-2025. [36] REN X,BO L.Discriminatively trained sparse code gradients for contour detection[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems,2012:584-592. [37] ZHANG Z,XING F,SHI X,et al.Semicontour:a semi-supervised learning approach for contour detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:251-259. [38] GANIN Y,LEMPITSKY V.N4-fields:neural network nearest neighbor fields for image transforms[C]//Asian Conference on Computer Vision.Cham:Springer,2014:536-551. [39] SHEN W,WANG X,WANG Y,et al.DeepContour:a deep convolutional feature learned by positive-sharing loss for contour detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3982-3991. [40] LIM J J,ZITNICK C L,DOLLáR P.Sketch tokens:a learned mid-level representation for contour and object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2013:3158-3165. [41] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,2012. [42] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [43] BERTASIUS G,SHI J,TORRESANI L.DeepEdge:a multi-scale bifurcated deep network for top-down contour detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:4380-4389. [44] BERTASIUS G,SHI J,TORRESANI L.High-for-low and low-for-high:efficient boundary detection from deep object features and its applications to high-level vision[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:504-512. [45] MANINIS K K,PONT-TUSET J,ARBELáEZ P,et al.Convolutional oriented boundaries:from image segmentation to high-level tasks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):819-833. [46] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [47] LAFFERTY J,MCCALLUM A,PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the Eighteenth International Conference on Machine Learning,2001:282-289. [48] MNIH V,HEESS N,GRAVES A.Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems,2014. [49] XU D,OUYANG W,ALAMEDA-PINEDA X,et al.Learning deep structured multi-scale features using attention-gated CRFs for contour prediction[C]//Advances in Neural Information Processing Systems,2017. [50] LIU Y,CHENG M M,HU X,et al.Richer convolutional features for edge detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3000-3009. [51] MA W,GONG C,XU S,et al.Multi-scale spatial context-based semantic edge detection[J].Information Fusion,2020,64:238-251. [52] XUAN W,HUANG S,LIU J,et al.FCL-Net:towards accurate edge detection via fine-scale corrective learning[J].Neural Networks,2022,145:248-259. [53] AL-AMAREN A,AHMAD M O,SWAMY M N S.RHN:a residual holistic neural network for edge detection[J].IEEE Access,2021,9:74646-74658. [54] WANG Y,WANG L,QIU J,et al.Multi-residual connection network for edge detection[J].Neural Processing Letters,2021,53(3):2165-2174. [55] HU D,YANG H,HOU X.Distance field-based convolutional neural network for edge detection[J].Computational Intelligence and Neuroscience,2022:1712258. [56] LIU Y,CHENG M M,FAN D P,et al.Semantic edge detection with diverse deep supervision[J].International Journal of Computer Vision,2022,130(1):179-198. [57] CAO Y J,LIN C,LI Y J.Learning crisp boundaries using deep refinement network and adaptive weighting loss[J].IEEE Transactions on Multimedia,2020,23:761-771. [58] 李正,贺赛先.基于新型网络的多层次边缘检测[J/OL].激光杂志:1-7[2022-10-24].http://kns.cnki.net/kcms/detail/50.1085.tn.20220929.1906.002.html. LI Z,HE S X.A novel network for multi-level edge detection[J/OL].Laser Journal:1-7[2022-10-24].http://kns.cnki.net/kcms/detail/50.1085.tn.20220929.1906.002.html. [59] 王兵,黄刚,张兴鹏.融合卷积特征的清晰边缘检测研究[J/OL].计算机科学与探索:1-15[2022-10-24].http://kns.cnki.net/kcms/detail/11.5602.TP.20220902.1615.002.html. WANG B,HUANG G,ZHANG X P.Research on crisp edge detection based on fusion of convolutional features[J/OL].Journal of Frontiers of Computer Science and Technology:1-15[2022-10-24].http://kns.cnki.net/kcms/detail/11.5602.TP.20220902.1615.002.html. [60] 黄胜,冉浩杉.基于语义信息的精细化边缘检测方法[J].计算机工程,2022,48(3):204-210. HUANG S,RAN H S.Refined edge detection method based on semantic information[J].Computer Engineering,2022,48(3):204-210. [61] 宋杰,于裕,骆起峰.基于RCF的跨层融合特征的边缘检测[J].计算机应用,2020,40(7):2053-2058. SONG J,YU Y,LUO Q F.Cross-layer fusion feature based on richer convolutional features for edge detection[J].Journal of Computer Applications,2020,40(7):2053-2058. [62] SHI W,CABALLERO J,HUSZáR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1874-1883. [63] PINHEIRO P O,LIN T Y,COLLOBERT R,et al.Learning to refine object segments[C]//European Conference on Computer Vision.Cham:Springer,2016:75-91. [64] HE J,ZHANG S,YANG M,et al.Bi-directional cascade network for perceptual edge detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3828-3837. [65] DENG R,SHEN C,LIU S,et al.Learning to predict crisp boundaries[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:562-578. [66] KELM A P,RAO V S,Z?LZER U.Object contour and edge detection with refine contournet[C]//International Conference on Computer Analysis of Images and Patterns.Cham:Springer,2019:246-258. [67] LIN G,MILAN A,SHEN C,et al.RefineNet:multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1925-1934. [68] SORIA X,RIBA E,SAPPA A.Dense extreme inception network:towards a robust CNN model for edge detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:1923-1932. [69] CHOLLET F.Xception:deep learning with depthwise sepa-rable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1251-1258. [70] LI K,TIAN Y,WANG B,et al.Bi-directional pyramid network for edge detection[J].Electronics,2021,10(3):329. [71] GAO L,ZHOU Z,SHEN H T,et al.Bottom-up and top-down:bidirectional additive net for edge detection[C]//Proceedings of the Twenty-Ninth International Conference on Artificial Intelligence,2021:594-600. [72] BAO S S,HUANG Y R,XU G Y.Bidirectional multiscale refinement network for crisp edge detection[J].IEEE Access,2022,10:26282-26293. [73] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [74] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [75] LE T,DUAN Y.REDN:a recursive encoder-decoder network for edge detection[J].IEEE Access,2020,8:90153-90164. [76] SORIA X,POMBOZA-JUNEZ G,SAPPA A D.LDC:lightweight dense CNN for edge detection[J].IEEE Access,2022,10:68281-68290. [77] AL-AMAREN A,AHMAD M O,SWAMY M N S.A low-complexity residual deep neural network for image edge detection[J].Applied Intelligence,2022:1-18. [78] DENG X,YANG Y,ZHANG H,et al.PCNN double step firing mode for image edge detection[J].Multimedia Tools and Applications,2022:1-27. [79] LIN C,ZHANG Z,HU Y.Bio-inspired feature enhancement network for edge detection[J].Applied Intelligence,2022:1-16. [80] YANG H,LI Y,YAN X,et al.ContourGAN:image contour detection with generative adversarial network[J].Knowledge-Based Systems,2019,164:21-28. [81] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [82] SINDEL A,MAIER A,CHRISTLEIN V.Art2Contour:salient contour detection in artworks using generative adversarial networks[C]//2020 IEEE International Conference on Image Processing(ICIP),2020:788-792. [83] PU M,HUANG Y,LIU Y,et al.EDTER:edge detection with transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:1402-1412. [84] MOTTAGHI R,CHEN X,LIU X,et al.The role of context for object detection and semantic segmentation in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:891-898. [85] MéLY D A,KIM J,MCGILL M,et al.A systematic comparison between visual cues for boundary detection[J].Vision Research,2016,120:93-107. [86] WANG P,YUILLE A.Doc:deep occlusion estimation from a single image[C]//European Conference on Computer Vision.Cham:Springer,2016:545-561. [87] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16×16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020. [88] SANCHEZ-LENGELING B,REIF E,PEARCE A,et al.A gentle introduction to graph neural networks[J].Distill,2021,6(9):e33. |
[1] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
[2] | 蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44. |
[3] | 胡松松, 吴亮红, 张红强, 陈亮, 周博文, 张侣. 改进多尺度卷积结构与高斯核的E-CenterNet算法[J]. 计算机工程与应用, 2023, 59(6): 70-80. |
[4] | 江倩殷, 余志, 李熙莹. 标签差网络在噪声标签数据集中的应用[J]. 计算机工程与应用, 2023, 59(6): 92-100. |
[5] | 李宇, 韩晓红, 张玲, 张海轩, 李钢. 融合时空注意力机制的P波到时拾取网络[J]. 计算机工程与应用, 2023, 59(6): 113-124. |
[6] | 张昊雨, 张德. 基于图结构的级联注意力视觉问答模型[J]. 计算机工程与应用, 2023, 59(6): 155-161. |
[7] | 吕晓玲, 杨胜月, 张明路, 梁明, 王俊超. 改进YOLOv5网络的鱼眼图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 241-250. |
[8] | 彭佩, 张美玲, 郑东. 融合CNN_LSTM的侧信道攻击[J]. 计算机工程与应用, 2023, 59(6): 268-276. |
[9] | 董光辉, 陈星宇. YOLOv5定位多特征融合的车标识别[J]. 计算机工程与应用, 2023, 59(5): 176-193. |
[10] | 白少进, 白静, 司庆龙, 姬卉, 袁涛. 面向三维模型多样化分类的深度集成学习[J]. 计算机工程与应用, 2023, 59(5): 222-231. |
[11] | 张嘉宇, 郭玫, 张永亮, 李梅, 耿楠, 耿耀君. 细粒度苹果病虫害知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(5): 270-280. |
[12] | 杨宇航, 林敏, 王长缨, 钟一文. 融合频率域特征的双路网络模型诊断新冠肺炎[J]. 计算机工程与应用, 2023, 59(5): 321-327. |
[13] | 孙书魁, 范菁, 李占稳, 曲金帅, 路佩东. 人工智能在新型冠状病毒肺炎中的研究综述[J]. 计算机工程与应用, 2023, 59(5): 28-39. |
[14] | 叶伟, 陶永军, 陈锡程, 伍亚舟. 脑卒中多分类预后预测的深度集成优化方法[J]. 计算机工程与应用, 2023, 59(5): 95-105. |
[15] | 梁明晶, 王璐, 温昕, 曹锐. 多特征融合的脑电情绪分类[J]. 计算机工程与应用, 2023, 59(5): 155-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||