计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (23): 145-153.DOI: 10.3778/j.issn.1002-8331.2207-0496
郭明镇,汪威,申红婷,候红涛,刘宽,罗子江
GUO Mingzhen, WANG Wei, SHEN Hongting, HOU Hongtao, LIU Kuan, LUO Zijiang
摘要: 为解决部署在嵌入式设备上的目标检测中特征提取速度较慢、检测实时性不足和算法移植性较差的问题,以YOLOv4-tiny为基准网络,提出一种基于CSPRDWConv(cross stage partial residual depthwise convolution)模块的轻量级网络YOLOv4-tiny-CSPRDWConv,并使用改进的Mosaic数据增强来提升检测模型精度。CSPRDWConv模块中适当缩减算力规模,使得整个模块在保持精度的同时大幅提升推理速度;改进的Mosaic数据增强方法,节省数据增强进程的时间,充分利用每个图像块,并且过滤掉物体过小的目标,使得模型更易于训练。在此基础之上,主干网络的卷积层全部选用小卷积核,只在最后一次压缩特征图时使用5×5的深度可分离卷积,以确保模型低延迟和高准确度的特性;在Neck中引入弱SPP模块,利用局部特征和全局特征来提高目标检测的精度;通过NEON指令对训练后的检测模型进行优化,将卷积层与BN层融合,加快模型的推理进程。改进的YOLOv4-tiny算法在1080Ti的硬件上达到1?308?FPS的实时检测速度,在RK3288开发板上的推理速度约为8?FPS,检测速度约为YOLOv4-tiny基准网络的4倍;mAP达到22.31%,相比于基准网络提升0.61个百分点。实验结果表明,改进的YOLOv4-tiny算法在嵌入式设备上的检测效果更为流畅和高效。