计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (21): 167-175.DOI: 10.3778/j.issn.1002-8331.2212-0361
王能文,张涛
WANG Nengwen, ZHANG Tao
摘要: 交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务。针对交通标志检测过程中,目标小、受背景环境影响等难点,提出一种基于改进YOLOX-S的算法。设计ResNet50-vd-dcn替换原YOLOX-S中的CSPDarknet53主干网络,使用ResNet-D结合可变性卷积,减少了模型的计算量同时也保证了网络的学习能力。提出增强特征图模块,该模块利用特征图连接流和注意力机制流来减少特征图生成过程中的信息丢失,进而提高模型的表示能力。提出一种三通道加权双向特征金字塔网络替换原有特征金字塔结构,可以有效加强特征融合,提高多尺度目标识别能力。为增加模型对正样本的学习,在后处理阶段引入Focal Loss损失函数。实验结果表明,与原YOLOX-S算法相比,在TT100K数据集上小目标精度、小目标召回率以及mAP分别提升了2.8、4.1、2.1个百分点,同时检测速度快了2.3?FPS。在CCTSDB数据上mAP提升了1.1个百分点,检测速度为120?FPS,满足实时检测的要求。