计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (20): 200-207.DOI: 10.3778/j.issn.1002-8331.2306-0032
熊恩杰,张荣芬,刘宇红,彭靖翔
XIONG Enjie, ZHANG Rongfen, LIU Yuhong, PENG Jingxiang
摘要: 针对当前传统网络模型对交通标志识别精度低、检测不准确的问题,提出一种基于YOLOv8n优化、改进的Ghost-YOLOv8交通标志检测模型。使用GhostConv代替部分Conv,设计全新的C2fGhost模块代替部分C2f,减少了模型的参数量,提升了模型的检测性能;在Neck部分添加GAM注意力机制模块,强化特征中的语义信息和位置信息,提高了模型的特征融合能力;针对检测小目标时尺度不一导致语义信息的丢失,添加小目标检测层,增强深层语义信息与浅层语义信息的结合;使用GIoU边界损失函数代替原损失函数,提升了网络的边界框回归性能。实验结果表明,改进的模型在中国交通标志检测数据集TT100K中的精确度(Precision)及平均精度均值(mAP)相较于原模型分别提高了9.5、6.5个百分点,模型的参数量及模型大小相比原模型分别降低了0.223×109、0.2?MB。综合说明,该模型在减少模型参数量及大小的同时提高了检测精度,显著优于对比算法,也满足边缘计算设备的要求,具有实际的应用价值。