计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (15): 87-96.DOI: 10.3778/j.issn.1002-8331.2212-0093

• 目标检测专题 • 上一篇    下一篇

面向复杂交通场景的道路目标检测方法

盛博莹,侯进,李嘉新,党辉   

  1. 1.西南交通大学 计算机与人工智能学院,成都 611756
    2.西南交通大学 信息科学与技术学院 智能感知智慧运维实验室,成都 611756
    3.西南交通大学 综合交通大数据应用技术国家工程实验室,成都 611756
  • 出版日期:2023-08-01 发布日期:2023-08-01

Road Object Detection Method for Complex Road Scenes

SHENG Boying, HOU Jin, LI Jiaxin, DANG Hui   

  1. 1.School of Computer and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
    2.Laboratory of Intelligent Perception and Smart Operation & Maintenance, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
    3.National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China
  • Online:2023-08-01 Published:2023-08-01

摘要: 针对复杂交通场景下小目标检测精度低,容易出现误检和漏检的问题,提出一种基于改进YOLOv5s的道路目标检测算法YOLOv5s-MRS。提出基于反馈机制的特征提取网络(RFP-PAN),增加浅层特征层与反馈连接并设计IASPP模块,充分融合不同尺度的特征信息,提升网络的特征融合能力;提出级联注意力机制(SECA),在通道和空间维度上聚焦重要特征,让算法关注更加有用的信息;利用Ghost模块的轻量化优势,降低算法的参数量、计算量和模型占用空间。实验结果表明,YOLOv5s-MRS算法在KITTI数据集和VisDrone2021 DET数据集上的检测精度分别达到了93.4%和40.8%,相比原始算法分别提高了1.6和8.6个百分点,模型大小为12.9 MB,在保证实时性的同时具有良好的检测精度,在一定程度上解决了小目标的漏检和误检问题。

关键词: YOLOv5s, 递归金字塔, 注意力机制, GhostNet

Abstract: Aiming at the problem of low detection accuracy of small-scale targets  in complex traffic scenes, and prone to false detection and missed detection, a target detection algorithm YOLOv5s-MRS based on YOLOv5s is proposed. Firstly, a feature extraction network(RFP-PAN) based on feedback mechanism is proposed to increase the shallow feature layer with feedback connection and design the IASPP module to fully fuse the feature information of different scales. Secondly, the cascaded attention mechanism(SECA) is proposed to focus on important features in channel and spatial dimensions and make the model to focus on more useful information. Finally, Ghost module is used to reduce the number of parameters, computation and model occupation space of the model. The experimental results show that the detection accuracy of YOLOv5s-MRS reaches 93.4% and 40.8% on KITTI dataset and VisDrone2021 DET dataset, respectively, which is 1.6 and 8.6 percentage points higher than that of the original algorithm and the model size is 12.9 MB. YOLOv5s-MRS has good detection accuracy while ensuring real-time, and  solves the problem of missing and false detection of small targets to some extent.

Key words: YOLOv5s, recursive feature pyramid, attention mechanism, GhostNet