计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (2): 129-134.DOI: 10.3778/j.issn.1002-8331.2107-0102
王玉荣,林民,李艳玲
WANG Yurong, LIN Min, LI Yanling
摘要: 以Word2Vec为代表的静态蒙古文词向量学习方法,将处于不同语境的多种语义词汇综合表示成一个词向量,这种上下文无关的文本表示方法对后续任务的提升非常有限。通过二次训练多语言BERT预训练模型与CRF相结合,并采用两种子词融合方式,提出一种新的蒙古文动态词向量学习方法。为验证方法的有效性,在内蒙古师范大学蒙古文硕博论文的教育领域、文学领域数据集上用不同的模型进行了同义词对比实验,并利用[K]-means聚类算法对蒙古文词语进行聚类分析,最后在嵌入式主题词挖掘任务中进行了验证。实验结果表明,BERT学出的词向量质量高于Word2Vec,相近词的向量在向量空间中的距离非常近,不相近词的向量较远,在主题词挖掘任务中获取的主题词有密切的关联。